For faster navigation, this Iframe is preloading the Wikiwand page for 环的局部化.

环的局部化

抽象代数中,局部化是一种在中形式地添加某些元素的倒数,藉以建构分式的技术;由此可透过张量积构造的局部化。范畴局部化过程类似,但此时加入的是态射之逆元素,以使得这些态射在局部化以后变为同构

局部化在环论代数几何中占有根本地位,范畴的局部化则引出导范畴的概念,在高等数学中有众多应用。

几何诠释

“局部化”一词源出代数几何。设 是一个仿射代数簇 的座标环(也就是 上的多项式函数),则 对其元素 的局部化的意义是将 中挖掉,得到的环 正是 的座标环;若对极大理想 作局部化,则可以设想为挖去所有的 ;得到的环 体现 上的多项式函数在 点的局部性质。

借着将理解为仿射代数簇上的拟凝聚层,可以类似地诠释模的局部化;它无非是拟凝聚层在一个点的茎。

环的局部化

在此仅考虑含单位元的。设 为环,积性子集(定义:对乘法封闭,并包含单位元的集合)。以下将探讨 之局部化。

泛性质

的局部化如果存在,是一个环 (或记作 )配上环同态 ,使之满足以下的泛性质

对任何环 及环同态 ,若 的元素在 下的像皆可逆,则存在唯一的环同态 ,使得 的合成。

此性质可保证局部化 的唯一性。

交换环的情形

当交换环 整环时,局部化的构造相当容易。若 ,则 必然是零环;若不然,我们可以在 分式环 中构造局部化:取 为形如 的元素即可。

对于一般的交换环,我们必须推广分式环的构造;在此须注意到:由于 中可能有零因子,我们不能鲁莽地通分一个分式。构造方式如下:

在集合 上定义下述等价关系

存在 使得

等价类 可以想成“分式” ,借此类比,在商集 上定义加法与乘法为:

可验证上述运算是明确定义的。此外还有环同态 ,定义为 。于是可定义 ,再 配上上述环运算与同态。在实践上,我们常迳将 里的元素写作分式

交换代数代数几何中经常考虑两种局部化:

  • 固定 ,取 。在交换环谱中,对这类 的局部化构成 基本开集 的所有素理想构成的集合)。这种局部化常记作
  • 固定素理想 ,取 ,此时也称作对素理想 的局部化。这种局部化常记作

以下是 的一些环论性质。

  • 当且仅当
  • 环同态 是单射,当且仅当 中不含零因子。
  • 同态 下的逆像给出下列一一对应:
一个重要的特例是取 ,可知 中的素理想一一对应至 中包含于 的素理想,因此 局部环

非交换环的情形

非交换环的局部化较困难,并非对所有积性子集 都有局部化。充分条件之一是欧尔条件,请参阅条目欧尔定理。

其应用之一是用于微分算子环。例如它可以解释作为一个微分算子 抽象地添加逆算子 ;微局部分析中运用了这类构造。

模的局部化

为含单位元的交换环, 是积性子集,而 是个 -模。模的局部化与交换环类似,写作 。我们依然要求存在模同态 及以下的泛性质(此泛性质蕴含唯一性):

对任何 -模 -模同态 ,存在唯一的 -模同态 ,使得 的合成。

事实上,可以用张量积构造模的局部化:

这是一个正合函子,它将单射映为单射。亦即:平坦-模。利用张量积与环的局部化的泛性质,可以形式地导出上述构造确实满足局部化的要求。

此外,也可以仿造交换环的局部化,用分式 直接构造 ,分式间的等价与代数运算类似交换环的情形。

范畴的局部化

范畴的局部化的意义在将一族态射之逆态射加入范畴中,使得这些态射成为同构。这在形式上近于环的局部化,也能使先前不同构的对象在局部化后变为同构。例如,在同伦理论中有许多连续映射在同伦的意义下可逆,借着将这些映射局部化,同伦等价的空间可被视为彼此同构。局部化范畴里的操作也称作分式运算,相关技术细节请见文献中 Gabriel-Zisman 或 Weibel 的著作。

一些例子

  1. 塞尔提议在模掉某类阿贝尔群 同伦范畴里操作,这意谓若群 满足 ,则视之为同构的。稍后 Dennis Sullivan 引进一个大胆的想法:改在空间的局部化里操作。如此将影响底层的拓扑空间。
  2. 克鲁尔维数至少是 2,此时若两个 -模 满足 支撑集的余维至少是 2,则可视之为伪同构的。岩泽理论大大利用了这个想法。
  3. 同调代数中,我们借着加入拟同构之逆而得到导范畴
  4. 在阿贝尔簇的理论中,我们常等同两个同源的阿贝尔簇,并将同源映射视为同构。此“至多差一个同源”的范畴是局部化较简单的例子,实质上不外是将 代以

集合论的问题

一般而言,给定一个范畴 及一族态射 ,在探讨是否能构造局部化 时会遇到以下问题:当 是小范畴或 是集合时已知可构造局部化,但一般来说则是个棘手的集合论问题;局部化的典型构造可能会造成两对象间的态射“太多”,换言之可能是个真类。发展模型范畴的动机之一正是要避免这类问题。

文献

  • P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Springer-Verlag New York, Inc., New York, 1967. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35.
  • Serge Lang, Algebra (2002), Graduate Texts in Mathematics 211, Springer. ISBN 0-387-95385-X
  • Charles A. Weibel, An Introduction to Homological Algebra (1994), Cambridge University Press. ISBN 0-521-55987-1
{{bottomLinkPreText}} {{bottomLinkText}}
环的局部化
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?