For faster navigation, this Iframe is preloading the Wikiwand page for 环的谱.

环的谱

抽象代数学交换代数代数几何学中,一个交换环是指其素理想全体形成的集合,记作。它被赋予扎里斯基拓扑和结构层,从而成为局部赋环空间

一个局部赋环空间若同构于一个交换环谱,即称为仿射概形

扎里斯基拓扑

对于交换环 里的任一理想 ,置 。容易证明下述性质:

  • 当且仅当

因此我们可以在上定义一个拓扑结构,使得其闭子集恰为形如的子集,称之扎里斯基拓扑

一般而言,扎里斯基拓扑并不满足豪斯多夫性质

结构层

考虑扎里斯基拓扑下的下述预层

为其层化,称作结构层。显然有,故构成一个局部赋环空间。

一个元素给出的截面,事实上可以证明

交换环谱间的态射

为交换环,为一同态,则可定义一个映射,这是从的连续映射,在结构层上则以定义,那么给出局部赋环空间的态射。

反之,任何仿射概形间的态射皆由此唯一地给出。上述对应遂建立起交换环的反范畴与仿射概形范畴的等价性。

古典观点

为代数封闭域,给定(i=1,2,...),则方程组定义一个代数簇

。根据希尔伯特零点定理的点一一对应到的极大理想。

一般而言,内的元素一一对应到内的不可约闭集。考虑全体素理想的好处之一,在于可以借此在概形上运用安德烈·韦伊的一般点(generic point)理论;此外,环同态不一定将极大理想拉回到极大理想,除非该环是 Jacobson 环。

的拓扑结构仅涉及里的幂零元素看似无几何意义,但它们在研究无穷小变化及态射的纤维上功效至大。

参见

{{bottomLinkPreText}} {{bottomLinkText}}
环的谱
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?