For faster navigation, this Iframe is preloading the Wikiwand page for 铽化合物.

铽化合物

铽化合物被365 nm的紫外光激发,发出绿光。

铽化合物镧系金属(元素符号:Tb)形成的化合物,在这些化合物中,铽一般显+3价,如TbCl3、Tb(NO3)3等;+4价的铽化合物如TbO2、BaTbF6也是已知的。[1]

三价铽离子在水溶液中一般是无色的,它在溶液或晶体中被一定波长的紫外光(如254 nm或365 nm)照射时,会发出绿色的荧光。这一性质产生了光学等领域的应用。[2]

氧族元素化合物

[编辑]

铽有多种氧化物,最易得到的是七氧化四铽,氢氧化物[3]、草酸盐[4]、对氨基苯甲酸盐[5]等铽化合物的热分解均会产生七氧化四铽,由于该氧化物同时含有三价铽和具有氧化性的四价铽,如和硝酸反应产生硝酸铽并放出氧气[3]

2 Tb4O7 + 24 HNO3 → 8 Tb(NO3)3 + 12 H2O + O2

它在乙酸和盐酸的混合物中回流,可以分离出三价铽和四价铽:[6]

Tb4O7 + 6 HCl → 2 TbO2 + 2 TbCl3 + 3 H2O

它与二氰二胺在高温下反应,可以得到Tb2O2CN2[7]

铽的另一种常见氧化物是三氧化二铽,它由七氧化四铽在1300 °C由氢气还原制得。[8]在掺杂钙后形成p型半导体。[9]二氧化铽可由稀盐酸处理七氧化四铽制得,[10]其水合物TbO2·xH2O可由过硫酸钾硝酸银的存在下氧化氢氧化铽得到。[11]二氧化铽可以和二氧化镨形成混晶。[12]

三硫化二铽是铽的硫化物之一,可由相应的单质按化学计量比反应得到,[13]也能由七氧化四铽在高温下与二硫化碳硫化氢反应制得。[14]它和氢氟酸溶液反应得到三氟化铽半水合物。[14]三硒化二铽可由铽的多硒化物TbSe1.9和金属铽反应得到,它可以形成黑色的针状晶体,具有U2S3结构,空间群为Pnma。[15]

卤化物及卤配合物

[编辑]

铽可以形成TbX3(X=F, Cl, Br, I)四种卤化物,除氟化物外均易溶于水,在水中是强电解质。无水卤化铽可由氧化物或卤化物的水合物反应制得:[16]

Tb2O3 + 6 NH4Cl → 2 TbCl3 + 3 H2O + 6 NH3
TbCl3·6H2O + 6 SOCl2 → TbCl3 + 6 SO2↑ + 12 HCl↑

四氟化铽是四价铽唯一可以形成的卤化物,具有强氧化性。它可由三氯化铽三氟化铽氟气在320 °C下反应得到:[17]

2 TbF3 + F2 → 2 TbF4

将TbF4和CsF按化学计量比混合,于氟气气氛中加热,可以得到CsTbF5。它是正交晶系晶体,空间群Cmca,具有层状结构,由[TbF8]4−和十一配位的Cs+构成。[18]化合物BaTbF6可由类似方法制得,它是正交晶系晶体,空间群Cmma,同样存在着[TbF8]4−[19]

含氧酸盐

[编辑]
硫酸铽(Tb2(SO4)3)是无色晶体(左图),在紫外光的照射下发出绿色荧光。
乙酸铽碳酸铯反应,生成铽的碱式碳酸盐沉淀,该沉淀和过量的碳酸铯反应,又再次溶解。反应中照射了365 nm波长的紫外光,有铽的特征绿光。

硫酸铽可由七氧化四铽和浓硫酸反应得到,它在水中可以结晶出无色的八水合物晶体,与相应的镨化合物同构。[20]加热八水合物可以得到无水物,无水物再次水合时发生放热反应。[21]

硝酸铽可由三氧化二铽和硝酸反应并结晶得到,晶体用45~55%硫酸干燥,可以得到六水合物。[22]加热水合物只能得到碱式盐TbONO3,其无水物可以通过三氧化二铽四氧化二氮反应得到。[23]磷酸铽可由磷酸氢二铵和硝酸铽反应得到,反应产生六方晶系的一水合物,它在355 nm波长的激发下可以发出铽的特征绿光(543 nm)。[24]砷酸铽在77 K是正交晶系(空间群Fddd)的晶体,在27.7 K时发生相变,转变为四方晶系(空间群I41/amd)的晶体[25],它在1.5 K以下是一种具有诱导磁矩的伊辛铁磁体[26]铽的锑酸盐TbSbO4也是已知的。[27]

碳酸铽可由氯化铽和饱和二氧化碳碳酸氢钠溶液反应得到,产物也需用饱和二氧化碳的水来洗涤。[28]锗酸盐TbIII13(GeO4)6O7(OH)和K2TbIVGe2O7可以在高温高压下合成得到,它们分别为三方和单斜晶系的无色晶体。[29]

铽的硼酸盐可由七氧化四铽和硼酸反应得到:

2 Tb4O7 + 8 H3BO3 → 8 TbBO3 + 12 H2O + O2

其六方相的单晶可以通过熔融提拉法获得;它还能形成一种三斜晶系的固体,可以通过溶胶-凝胶法得到。[30]复合硼酸盐TbFe3(BO3)4和TbAl3(BO3)4也可以用类似的方法得到。[31][32]三氧化二铽、氯化铽和氧化硼氯化铯熔体中反应,可以得到氧氯化物硼酸盐Tb4O4Cl(BO3),它是单斜晶系晶体,空间群P21/n[33]铝酸盐Tb3Al5O12[34]与镓酸盐Tb3Ga5O12[35]都可用作磁光材料

一种Tb-MOF在280 nm紫外光激发下的发光,光谱中有着Tb3+的特征峰。[36]

应用

[编辑]

三价铽的化合物在激发下可以发出绿光,如氧化铽可用于显像管电视中。[37]此外,铽化合物还有其它应用,例如TbFe2基化合物可用于磁致伸缩材料,[38]介电质Tb3Ga5O12可用作磁光材料[39],加替沙星铽可用作药物。[40]

参考文献

[编辑]
  1. ^ 无机化学丛书. pp 187-188. 1.2.3 氧化态及电极电势
  2. ^ Tieli, Z. Photochemical fluorescence enhancement of the terbium–lomefloxacin complex and its application. Talanta. 1999, 49 (1): 77–82. ISSN 0039-9140. doi:10.1016/S0039-9140(98)00364-6. 
  3. ^ 3.0 3.1 陈寿椿. 重要无机化学反应. 上海科学技术出版社, 1994. pp 1304-1305.
  4. ^ Hartmut Bergmann, Leopold Gmelin. Gmelin Handbook of Inorganic Chemistry, System Number 39. Springer-Verlag. 1986: 397. ISBN 9783540935254. 
  5. ^ Teixeira, J.A.; Nunes, W.D.G.; do Nascimento, A.L.C.S.; Colman, T.A.D.; Caires, F.J.; Gálico, D.A.; Ionashiro, M. Synthesis, thermoanalytical, spectroscopic study and pyrolysis of solid rare earth complexes (Eu, Gd, Tb and Dy) with p -aminobenzoic acid. Journal of Analytical and Applied Pyrolysis. 2016, 121: 267–274. ISSN 0165-2370. doi:10.1016/j.jaap.2016.08.006. 
  6. ^ Edelmann, F.T.; Poremba, P. Herrmann, W.A. , 编. Synthetic Methods of Organometallic and Inorganic Chemistry 6. Stuttgart: Georg Thieme Verlag. 1967. ISBN 3-13-103071-2. 
  7. ^ Lei, M.; Zhao, H.Z.; Yang, H.; Song, B.; Cao, L.Z.; Li, P.G.; Tang, W.H. Syntheses of metal nitrides, metal carbides and rare-earth metal dioxymonocarbodiimides from metal oxides and dicyandiamide. Journal of Alloys and Compounds. 2008, 460 (1-2): 130–137. ISSN 0925-8388. doi:10.1016/j.jallcom.2007.05.076. 
  8. ^ G. J. McCarthy. Crystal data on C-type terbium sesquioxide (Tb
    2
    O
    3
    ). Journal of Applied Crystallography. October 1971, 4 (5): 399–400. doi:10.1107/S0021889871007295.
     
  9. ^ Reidar Haugsrud; Yngve Larring & Truls Norby. Proton conductivity of Ca-doped Tb
    2
    O
    3
    . Solid State Ionics (Elsevier B.V.). December 2005, 176 (39–40): 2957–2961. doi:10.1016/j.ssi.2005.09.030.
     
  10. ^ 无机化学丛书. pp 244-257
  11. ^ 杨汝栋, 刘建民, 马太儒. 用化学氧化法从水溶液中制备Tb(Ⅳ)水合氧化物及其性质的研究. 兰州大学学报(自然科学版), 1983 (01): 71-80. DOI: 10.13885/j.issn.0455-2059.1983.01.010
  12. ^ Brauer, Georg; Pfeiffer, Burkhard. Mixed crystals between PrO2 and TbO2. Journal fuer Praktische Chemie (Leipzig), 1966. 34 (1-4): 23-29. ISSN: 0021-8383.
  13. ^ Orlova, I. G.; Eliseev, A. A. Physicochemical study of the interaction of sulfur with terbium. Zhurnal Neorganicheskoi Khimii, 1983. 28 (1): 65-68. ISSN: 0044-457X
  14. ^ 14.0 14.1 Andrrev, O.V.; Razumkova, I.A.; Boiko, A.N. Synthesis and thermal stability of rare earth compounds REF3 , REF3 · n H2O and (H3O)RE3F10 · n H2O (RE = Tb − Lu, Y), obtained from sulphide precursors. Journal of Fluorine Chemistry. 2018, 207: 77–83. ISSN 0022-1139. doi:10.1016/j.jfluchem.2017.12.001. 
  15. ^ Grundmeier, Thorsten; Urland, Werner. Crystal structure of Tb2Se3. Zeitschrift fuer Anorganische und Allgemeine Chemie, 1997. 623 (11): 1744-1746. ISSN 0044-2313.
  16. ^ 无机化学丛书. pp 210-215. 2. 卤素化合物
  17. ^ G. Meyer, Lester R. Morss: Synthesis of Lanthanide and Actinide Compounds. Springer Science & Business Media, 1991, pp 60. ISBN 978-0-7923-1018-1. Google Books页面存档备份,存于互联网档案馆
  18. ^ Gaumet, V.; Avignant, D. Caesium Pentafluoroterbate, CsTbF5. Acta Crystallographica Section C Crystal Structure Communications. 1997, 53 (9): 1176–1178. ISSN 0108-2701. doi:10.1107/S0108270197005556. 
  19. ^ Largeau, E.; El-Ghozzi, M.; Métin, J.; Avignant, D. β-BaTbF6. Acta Crystallographica Section C Crystal Structure Communications. 1997, 53 (5): 530–532. ISSN 0108-2701. doi:10.1107/S0108270196014527. 
  20. ^ Wei, D.Y.; Zheng, Y.-Q. Crystal structure of terbium sulfate octahydrate, Tb2(SO4)3 · 8H2O, and of dysprosium sulfate octahydrate, Dy2(SO4)3 · 8H2O. Zeitschrift für Kristallographie - New Crystal Structures. 2003, 218 (JG). ISSN 2197-4578. doi:10.1524/ncrs.2003.218.jg.23. 
  21. ^ 无机化合物合成手册. pp 258-259. 819 硫酸盐.
  22. ^ 高胜利, 刘翊纶, 杨祖培. 稀土硝酸盐的制法、性质及结构页面存档备份,存于互联网档案馆). 稀土, 1990 (4): 23-28.
  23. ^ 无机化合物合成手册. pp 260-261. 820 硝酸盐.
  24. ^ Di, Weihua; Wang, Xiaojun; Zhao, Haifeng. Synthesis and Characterization of LnPO4 · nH2O (Ln = La, Ce, Gd, Tb, Dy) Nanorods and Nanowires. Journal of Nanoscience and Nanotechnology. 2007, 7 (10): 3624–3628. ISSN 1533-4880. doi:10.1166/jnn.2007.847. 
  25. ^ Schäfer, W.; Will, G.; Müller-Vogt, G. Refinement of the crystal structure of terbium arsenate TbAsO4 at 77 K and 5 K by profile analysis from neutron diffraction powder data. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 1979, 35 (3): 588–592. ISSN 0567-7408. doi:10.1107/S0567740879004210. 
  26. ^ Müller, P. H.; Kasten, A.; Schienle, M. Relaxation in the ferromagnetic phase of terbium arsenate (TbAsO4). physica status solidi (b). 1983, 119 (1): 239–249. ISSN 0370-1972. doi:10.1002/pssb.2221190128. 
  27. ^ Siqueira, Kisla P. F.; Lima, Patrícia P.; Ferreira, Rute A. S.; Carlos, Luís D.; Bittar, Eduardo M.; Granado, Eduardo; González, Juan Carlos; Abelenda, Arturo; Moreira, Roberto L.; Dias, Anderson. Lanthanide Orthoantimonate Light Emitters: Structural, Vibrational, and Optical Properties. Chemistry of Materials. 2014, 26 (22): 6351–6360. ISSN 0897-4756. doi:10.1021/cm502504b. 
  28. ^ Sastry, R.L.N.; Yoganarasimhan, S.R.; Mehrotra, P.N.; Rao, C.N.R. Preparation, characterization and thermal decomposition of praseodymium, terbium and neodymium carbonates. Journal of Inorganic and Nuclear Chemistry. 1966, 28 (5): 1165–1177. ISSN 0022-1902. doi:10.1016/0022-1902(66)80442-6. 
  29. ^ Fulle, Kyle; Sanjeewa, Liurukara D.; McMillen, Colin D.; Wen, Yimei; Rajamanthrilage, Apeksha C.; Anker, Jeffrey N.; Chumanov, George; Kolis, Joseph W. One-Pot Hydrothermal Synthesis of TbIII13(GeO4)6O7(OH) and K2TbIVGe2O7: Preparation of a Stable Terbium(4+) Complex. Inorganic Chemistry. 2017, 56 (11): 6044–6047. ISSN 0020-1669. doi:10.1021/acs.inorgchem.7b00821. 
  30. ^ Cao, Li Li; Chen, Yi Yong; Lin, Chan Juan; Shen, Ze Bin; Guo, Fei Yun; Ye, Jing; Chen, Jian Zhong. Preparation of TbBO3 Powder and Growth of TbBO3 Crystal. Advanced Materials Research. 2011,. 306-307: 416–422. ISSN 1662-8985. doi:10.4028/www.scientific.net/AMR.306-307.416. 
  31. ^ Ritter, C; Balaev, A; Vorotynov, A; Petrakovskii, G; Velikanov, D; Temerov, V; Gudim, I. Magnetic structure, magnetic interactions and metamagnetism in terbium iron borate TbFe3(BO3)4: a neutron diffraction and magnetization study. Journal of Physics: Condensed Matter. 2007, 19 (19): 196227. ISSN 0953-8984. doi:10.1088/0953-8984/19/19/196227. 
  32. ^ Kadomtseva, A. M.; Popov, Yu. F.; Vorob'ev, G. P.; Kostyuchenko, N. V.; Popov, A. I.; Mukhin, A. A.; Ivanov, V. Yu.; Bezmaternykh, L. N.; Gudim, I. A.; Temerov, V. L.; Pyatakov, A. P.; Zvezdin, A. K. High-temperature magnetoelectricity of terbium aluminum borate: The role of excited states of the rare-earth ion. Physical Review B. 2014, 89 (1). ISSN 1098-0121. doi:10.1103/PhysRevB.89.014418. 
  33. ^ Schäfer, Marion C.; Nikelski, Tanja; Schleid, Thomas. Syntheses and crystal structures of the novel oxide chloride oxoborates Ln4O4Cl[BO3] (Ln = Eu–Tm). Zeitschrift für Kristallographie - Crystalline Materials. 2013, 228 (9). ISSN 2196-7105. doi:10.1524/zkri.2013.1648. 
  34. ^ Lin, Hui; Zhou, Shengming; Teng, Hao. Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications. Optical Materials. 2011, 33 (11): 1833–1836. ISSN 0925-3467. doi:10.1016/j.optmat.2011.06.017. 
  35. ^ Jin, Weizhao; Ding, Jingxin; Guo, Li; Gu, Qi; Li, Chun; Su, Liangbi; Wu, Anhua; Zeng, Fanming. Growth and performance research of Tb 3 Ga 5 O 12 magneto-optical crystal. Journal of Crystal Growth. 2018, 484: 17–20. ISSN 0022-0248. doi:10.1016/j.jcrysgro.2017.12.024. 
  36. ^ Zhen Li, Rosario Núñez, Mark E. Light, Eliseo Ruiz, Francesc Teixidor, Clara Viñas, Daniel Ruiz-Molina, Claudio Roscini, José Giner Planas. Water-Stable Carborane-Based Eu3+/Tb3+ Metal–Organic Frameworks for Tunable Time-Dependent Emission Color and Their Application in Anticounterfeiting Bar-Coding. Chem. Mater. 2022, 34, 10, 4795–4808. doi:10.1021/acs.chemmater.2c00323
  37. ^ Caro, Paul. Rare earths in luminescence. Rare earths. 1998-06-01: 323–325 [2019-07-06]. ISBN 978-84-89784-33-8. (原始内容存档于2020-03-13). 
  38. ^ Manwani, Krishna; Chelvane, Arout J.; Panda, Emila. Oxidation of TbFe2: Microstructure of oxide-film by both theory and experiment. Corrosion Science. 2018, 130: 153–160. ISSN 0010-938X. doi:10.1016/j.corsci.2017.10.030. 
  39. ^ Löw, Ute; Zherlitsyn, Sergei; Araki, Koji; Akatsu, Mitsuhiro; Nemoto, Yuichi; Goto, Terutaka; Zeitler, Uli; Lüthi, Bruno. Magneto-Elastic Effects in Tb3Ga5O12. Journal of the Physical Society of Japan. 2014, 83 (4): 044603. ISSN 0031-9015. doi:10.7566/JPSJ.83.044603. 
  40. ^ 连宁, 赵慧春, 孙春燕, 金林培, 张仲伦, 郑雁珍. 加替沙星铽敏化化学发光与应用页面存档备份,存于互联网档案馆). 高等学校化学学报, 2002, 23 (4): 56-58.

参考书籍

[编辑]

  • 易宪武, 黄春辉, 王慰, 刘余九, 吴瑾光. 无机化学丛书 第七卷 钪、稀土元素. 北京: 科学出版社, 1992. ISBN 9787030305749.
  • 日本化学会 编. 安家驹, 陈之川 译. 无机化合物合成手册 第二卷. 北京: 化学工业出版社, 1986. CSBN 15063·3726 (無機化合物の合成Ⅱ. 东京: 丸善株式会社, 1977)

{{bottomLinkPreText}} {{bottomLinkText}}
铽化合物
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?