For faster navigation, this Iframe is preloading the Wikiwand page for 算符.

算符

物理學领域裡,算符(operator)亦稱算子運算子[1],有别于数学的算子,其作用於物理系統的狀態空間,使得物理系統從某種狀態變換為另外一種狀態。這變換可能相當複雜,需要用很多方程式來表明,假若能夠使用算符來代表,可以更為簡單扼要地表達論述。

對於很多案例,假若作用的對象有所迥異,算符的物理行為也會不同;但是,對於有些案例,算符的物理行為具有一般性,這時,就可以將論題抽象化,專注於研究算符的物理行為,不必顧慮到狀態的獨特性。這方法比較適用於一些像對稱性守恆定律的論題。因此,在經典力學裏,算符是很有用的工具。在量子力學裏,算符為理論表述不可或缺的要素。

對於更深奧的理論研究,可能會遇到很艱難的數學問題,算符理論(operator theory)能夠提供高功能的架構,使得數學推導更為簡潔精緻、易讀易懂,更能展現出內中物理涵意。

一般而言,在經典力學裏的算符大多作用於函數,這些函數的參數為各種各樣的物理量,算符將某函數映射為另一種函數。這種算符稱為「函數算符」。在量子力學裏的算符稱為「量子算符」,作用的對象是量子態。量子算符將某量子態映射為另一種量子態。

經典力學

經典力學裏,粒子(或一群粒子)的動力行為是由拉格朗日量哈密頓量決定;其中,分別是廣義坐標廣義速度共軛動量是時間。

假設拉格朗日量或哈密頓量與某廣義坐標無關,則當有所改變時,仍舊會保持不變,這意味著粒子的動力行為也會保持不變,對應於的共軛動量守恆。對於廣義坐標的改變,動力行為所具有的不變性是一種對稱性。在經典力學裏,當研讀有關對稱性的課題時,算符是很有用的工具。

特別而言,假設對於某種的變換運算,物理系統的哈密頓量是個不變量;也就是說,假設

在這案例裏,所有的元素都是物理算符,能夠將物理系統從某種狀態變換為另一種狀態;儘管作用於這物理系統,哈密頓量守恆不變。

舉一個關於平移於空間的簡單例子。「平移算符」能夠將粒子從坐標為移動至坐標為,以方程式表示:

其中,是描述一群粒子的密度函數。

給定一個對於平移變換具有不變性的物理系統,則儘管的作用,這物理系統的哈密頓量是個不變量,對應於坐標的動量守恆。

經典力學算符表格

算符 標記 位置 動量
平移算符
時間演化算符
旋轉算符
伽利略變換算符
宇稱算符
時間反演算符
  • 旋轉矩陣是旋轉軸向量,是旋轉角弧。

生成元概念

對於一個微小的平移變換,猜測平移算符的形式為

其中,是「單位算符」──變換單位元是微小參數,是專門用來設定平移變換生成元

為了簡化論述,只考慮一維案例,推導平移於一維空間的生成元。將平移算符作用於函數

由於很微小,可以泰勒近似

重寫平移算符的方程式為

其中,導數算符是平移群的生成元。

總結,平移群的生成元是導數算符。

指數映射

在正常狀況下,通過指數映射,可以從生成元得到整個。對於平移於空間這案例,重複地做次微小平移變換,來代替一個有限值為的平移變換

現在,讓變得無窮大,則因子趨於無窮小:

這表達式的極限為指數函數:

核對這結果的正確性,將指數函數泰勒展開冪級數

這方程式的右手邊可以重寫為

這正是泰勒級數,也是的原本表達式結果。

物理算符的數學性質是很重要的研讀論題。更多相關內容,請參閱條目C*-代数與蓋爾范德-奈馬克定理(Gelfand-Naimark theorem)。

量子力學

量子力學裏,算符的功能被發揮得淋漓盡致。量子力學的數學表述建立於算符的概念。量子系統的量子態可以用態向量設定,態向量是向量空間單位範數向量。在向量空間內,量子算符作用於量子態,使它變換成另一個量子態。由於物體的態向量範數應該保持不變,量子算符必須是厄米算符[來源請求]。假若變換前的量子態與變換後的量子態,除了乘法數值以外,兩個量子態相同,則稱此量子態為本徵態,稱此乘法數值為本徵值[2]:11-12

物理實驗中可以觀測到的物理量稱為可觀察量。每一個可觀察量,都有其對應的算符。可觀察量的算符也許會有很多本徵值與本徵態。根據統計詮釋,每一次測量的結果只能是其中的一個本徵值,而且,測得這本徵值的機會呈機率性,量子系統的量子態也會改變為對應於本徵值的本徵態。[3]:106-109

量子算符

假設,物理量是某量子系統的可觀察量,其對應的量子算符可能有很多不同的本徵值與對應的本徵態,這些本徵態,形成了具有正交歸一性基底[3]:96-99

其中,克羅內克函數

假設,某量子系統的量子態為

其中,是複係數,是在裏找到機率幅[2]:50

測量這動作將量子態改變為本徵態的機率為,測量結果是本徵值的機率也為

期望值

在量子力學裏,重複地做同樣實驗,通常會得到不同的測量結果,期望值是理論平均值,可以用來預測測量結果的統計平均值。

採用狄拉克標記,對於量子系統的量子態,可觀察量的期望值定義為[2]:24-25

其中,是對應於可觀察量的算符。

將算符作用於量子態,會形成新量子態

從左邊乘以量子態,經過一番運算,可以得到

所以,每一個本徵值與其機率的乘積,所有乘積的代數和,就是可觀察量期望值

將上述定義式加以推廣,就可以用來計算任意函數的期望值:

例如,可以是,即重複施加算符兩次:

對易算符

假設兩種可觀察量的算符分別為,它們的對易算符定義為

對易算符是由兩種算符組合而成的複合算符,當作用於量子態時,會給出

假設,則稱這兩種可觀察量為「相容可觀察量」,否則,,稱這兩種可觀察量為「不相容可觀察量」。

假設兩種可觀察量為不相容可觀察量,則由於不確定原理,絕無法製備出這兩種可觀察量在任意精確度內的量子系統。注意到這是一個關於製備方面的問題,不是一個關於測量方面的問題。假若精心設計測量實驗,裝備足夠優良的測量儀器,則對於某些量子系統,測量這兩種可觀察量至任意精確度是很容易達成的任務。[4]

厄米算符

每一種經過測量而得到的物理量都是實值,因此,可觀察量的期望值是實值:

對於任意量子態,這關係都成立:

根據伴隨算符的定義,假設的伴隨算符,則。因此,

這正是厄米算符的定義。所以,表現可觀察量的算符,都是厄米算符。[3]:96-99

矩陣力學

應用基底的完備性,添加單位算符於算符的兩旁,可以得到[2]:20-23

其中,是求和式內每一個項目的係數。

所以,量子算符可以用矩陣形式來代表:

算符與它的伴隨算符彼此之間的關係為

所以,分別代表這兩個算符的兩個矩陣,彼此是對方的轉置共軛。對於厄米算符,代表的矩陣是個實值的對稱矩陣

用矩陣代數來計算算符怎樣作用於量子態,假設系統因此變換為量子態

從左邊乘以本徵態,應用基底的完備性,添加單位算符於算符的右邊,可以得到

右矢分別用豎矩陣來代表

    

兩個豎矩陣彼此之間的關係為

假設算符是厄米算符,則其所有本徵態都相互正交。[5]以矩陣來代表算符,可以計算出一組本徵值與對應的本徵態,每一次做測量會得到的結果只能是這一組本徵值中之一。由於本徵態的正交性質,可以找到一組基底來表示每一種量子態。解析方塊矩陣的特徵多項式,就可以找到本徵值

量子算符表格

在這表格裏,算符的表現空間是位置空間。假若表現空間是其它種空間,則表示出的方程式會不一樣。在英文字母上方的尖角號表示整個符號代表的是個量子算符,不是單位向量。

算符名稱 直角坐標系分量表示 向量表示
位置算符
動量算符 一般狀況

一般狀況

電磁場

電磁場(磁向量勢

動能算符 平移運動

平移運動

電磁場

電磁場(磁向量勢

旋轉運動(轉動慣量

旋轉運動

勢能算符 N/A
總能量算符 N/A 含時位勢:

不含時位勢:

哈密頓算符 N/A
角動量算符
自旋算符

其中,

自旋1/2粒子的包立矩陣

其中,向量的分量是包立矩陣。

總角動量算符
躍遷矩(電)
(transition moment)

範例

位置算符

只思考一維問題,將位置算符施加於位置本徵態,可以得到本徵值,即粒子的位置:[6]:220-221

由於位置基底具有完整性,任意量子態可以按著位置本徵態形成的基底展開:

將位置算符施加於量子態,由於算符只作用於右矢,與其它數學個體無關,可以移入積分式內:

左矢與這方程式的內積為

設定量子態。由於位置基底具有完整性,量子態的內積,可以按著位置本徵態形成的基底展開為

將這兩個積分式加以比較,立刻可以辨識出全等式

設定量子態。量子態的位置空間表現,即波函數,分別定義為

兩個波函數之間的關係為

總結,位置算符作用於量子態的結果,表現於位置空間,等價於波函數的乘積

動量算符

表現於位置空間,一維動量算符為

將動量算符施加於量子態,可以得到類似前一節得到的結果:

應用位置基底所具有的完整性,對於任意量子態,可以得到更廣義的結果:

其中,分別是量子態表現於位置空間的波函數

假設的本徵態,本徵值為,則可得到

改寫為本徵值為的本徵態,方程式改寫為

這微分方程式的解析解為

所以,動量本徵態的波函數是一個平面波。不需要應用薛丁格方程式,就可以推導求得這出結果。[2]:50-54

參閱

參考文獻

  1. ^ Kittel charles著,洪連輝等譯,固態物理學導論,第681頁。
  2. ^ 2.0 2.1 2.2 2.3 2.4 Sakurai, J. J.; Napolitano, Jim, Modern Quantum Mechanics 2nd, Addison-Wesley, 2010, ISBN 978-0805382914 
  3. ^ 3.0 3.1 3.2 Griffiths, David J., Introduction to Quantum Mechanics (2nd ed.), Prentice Hall, 2004, ISBN 0-13-111892-7 
  4. ^ Ballentine, L. E., The Statistical Interpretation of Quantum Mechanics, Reviews of Modern Physics, 1970, 42: 358–381, doi:10.1103/RevModPhys.42.358 
  5. ^ Molecular Quantum Mechanics Parts I and II: An Introduction to QUANTUM CHEMISRTY (Volume 1), P.W. Atkins, Oxford University Press, 1977, ISBN 0-19-855129-0
  6. ^ 費曼, 理查; 雷頓, 羅伯; 山德士, 馬修, 費曼物理學講義III量子力學(3)薛丁格方程式, 台灣: 天下文化書: pp. 205–237, 2006, ISBN 986-417-672-2 
{{bottomLinkPreText}} {{bottomLinkText}}
算符
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?