For faster navigation, this Iframe is preloading the Wikiwand page for 拓撲向量空間.

拓撲向量空間

拓撲向量空間泛函分析研究中的一個基本結構。顧名思義就是要研究具有拓撲結構向量空間

拓撲向量空間主要都是函數空間,在上面定義的拓撲結構就是函數列收歛的條件。

希爾伯特空間巴拿赫空間是典型的例子。

定義

[编辑]
帶有上述兩個性質的原點的鄰域族唯一確定一個拓撲向量空間。在這個向量空間內的任何其他點的鄰域系統是通過平移獲得的。

一個拓撲向量空間 X 是佈於一個拓撲域 K (通常取實數或複數域)上的向量空間,其上帶有拓撲結構使得向量加法 X × XX 與純量乘法 K × XX 為連續映射。

:某些作者也要求 X豪斯多夫空間,更有要求其為局部凸空間者(例如 Fréchet 空間)。一個拓撲向量空間是豪斯多夫空間的充分條件是該空間為 空間。

佈於 K 上的拓撲向量空間範疇通常記為 TVSKTVectK,其對象為佈於 K 上的拓撲向量空間,態射則為連續的 K-線性映射。拓撲向量空間的同構是既是同胚也是線性的映射。

例子

[编辑]

所有賦範向量空間都是拓撲向量空間的例子。因此所有巴拿赫空間希爾伯特空間也是這些例子。

函數空間

[编辑]

數學分析中應用的拓撲向量空間主要是函數空間。較常見的例子有:

  • :拓撲空間 上的連續函數空間,其拓撲由一族半範數 定義,其中 遍取 中的緊子集。
  • :拓撲空間 上的緊支撐集連續函數空間,拓撲由範數 定義。
  • Lp空間:測度空間 上滿足 的函數空間,拓撲由範數 定義,其中
  • 索伯列夫空間偏微分方程理論中常用的空間,詳見主條目索伯列夫空間
  • 分佈:一種廣義函數理論,用以定義並研究偏微分方程的廣義解。全體分佈構成一個拓撲向量空間。
  • 施瓦兹空間:又稱快速遞減函數空間,定義為 ,其中 多重指標,其中的半範數由 給出。此空間的重要性主要在於傅立葉變換理論。

積向量空間

[编辑]

當賦予乘積空間後,拓撲向量空間的家族的笛卡兒乘積都是拓撲向量空間.例如,Xf : RR函數的集合. X可以被乘積空間RR來確定的,並帶有自然的乘積空間.有了這個拓撲,X成了拓撲向量空間,稱呼為逐點收斂的空間.命名的原因是如果(fn) 是X集合內元素的序列而對於所有實數x fn(x)都有一個極限 f(x) ,那麼fnX集合內有一個極限f.這個空間就是完整但不能賦範.

拓撲結構

[编辑]

向量空間對加法構成阿貝爾群,拓撲向量空間的加法逆運算 是連續的(因為 ),因此拓撲向量空間可視為可交換的拓撲群

特別是:拓撲向量空間是一致空間,因此可以談論完備性一致收斂一致連續。向量運算(加法與純量積)是一致連續的,因此拓撲向量空間的完備化仍為拓撲向量空間,原空間在其中是個稠密的線性子空間。

向量運算不只連續,實則還是同胚,因此我們可以從原點附近的一組局部重構整個空間的拓撲。局部基可由以下兩種開集組成:

  • 吸收集;事實上,原點的任何鄰域都是吸收集。
  • 平衡集

一個拓撲向量空間可度量化的充要條件是:(一)它是豪斯多夫空間(二)原點有一組可數的局部

拓撲向量空間之間的線性函數若在某一點連續,則在整個定義域上連續。一個線性泛函連續的充要條件是其核為閉子空間。

有限維向量空間有唯一的豪斯多夫拓撲,因此任何有限維拓撲向量空間都同構於 (帶上確界範數:)。對於豪斯多夫拓撲向量空間,有限維等價於局部緊。

拓撲向量空間的種類

[编辑]

在應用中,我們常考慮具有一些附帶拓撲性質的空間,以下是一些常見的種類,大致以其性質之「良好」與否排序。

  • 局部凸拓撲向量空間:每一點都有一組由凸集構成的局部。一個空間是局部緊若且唯若其拓撲可由一組半範數定義。局部緊性對某些「幾何」論證(例如哈恩-巴拿赫定理)至關重要。
  • F-空間:由一個具平移不變性的度量定義的完備拓撲向量空間,例子包括Lp空間(p > 0)。
  • 弗雷歇空間:局部凸的 F-空間。許多有趣的函數空間都是弗雷歇空間。
  • 核空間:使得映至任何巴拿赫空間的有界算子均為核算子的弗雷歇空間。
  • 賦範向量空間半賦範向量空間:顧名思義,即其拓撲由一範數或一族半範數定義的拓撲向量空間。在賦範向量空間中,一算子的連續性等價於有界性。
  • 巴拿赫空間:完備賦範向量空間。泛函分析學大部奠基於此。
  • 自反巴拿赫空間:使得自然映射 為同構的巴拿赫空間。非自反空間的重要例子之一是 空間。
  • 希爾伯特空間:拓撲由一內積定義的拓撲向量空間。雖然這類空間可能是無窮維的,大部分有限維上的幾何論證仍可照搬至此。
  • 歐幾里得空間:即有限維的豪斯多夫拓撲向量空間。

對偶空間

[编辑]

拓撲向量空間 連續對偶空間定義為所有連續線性泛函構成的空間 ,其拓撲可定義為使對偶配對 為連續映射的最粗拓撲(稱為弱-*拓撲)。當 巴拿赫空間時, 可以藉算子範數在 上定義更細的拓撲,然而弱-*拓撲具有一些緊緻性定理(巴拿赫-阿劳格鲁定理),因而在應用中仍相當重要。

文獻

[编辑]
  • A Grothendieck: Topological vector spaces, Gordon and Breach Science Publishers, New York, 1973. ISBN 978-0-677-30020-7
  • G Köthe: Topological vector spaces. Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag, New York, 1969. ISBN 978-0-387-04509-2
  • Schaefer, Helmuth H. Topological vector spaces. New York: Springer-Verlag. 1971. ISBN 978-0-387-98726-2. 
  • Lang, Serge. Differential manifolds. Reading, Mass.–London–Don Mills, Ont.: Addison-Wesley Publishing Co., Inc. 1972. 
  • F Trèves: Topological Vector Spaces, Distributions, and Kernels, Academic Press, 1967. ISBN 978-0-486-45352-1.
{{bottomLinkPreText}} {{bottomLinkText}}
拓撲向量空間
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?