For faster navigation, this Iframe is preloading the Wikiwand page for Теорія множин Цермело — Френкеля.

Теорія множин Цермело — Френкеля

Матеріал з Вікіпедії — вільної енциклопедії.

Теорія множин Цермело — Френкеля (позначається ZF) — найпоширеніша аксіоматика теорії множин, і, через це, найпоширеніша основа математики.

ZFC — теорія множин Цермело — Френкеля з аксіомою вибору (AC).

ZFC містить єдине примітивне онтологічне поняття — множина, та єдине онтологічне припущення, що всі об'єкти в досліджуваному просторі (наприклад, всі математичні об'єкти) є множинами.

Вводиться єдине бінарне відношення — приналежність до множини; позначає що множина є елементом множини , та записується як .

ZFC є теорією першого порядку; в ZFC містяться аксіоми, в яких використовується логіка першого порядку. Ці аксіоми описують: порівняння, існування, побудову та впорядкування множин.

Передумови створення

[ред. | ред. код]

Аксіоматична теорія множин — напрям у математичній логіці, присвячений вивченню фрагментів змістовної теорії множин методами математичної логіки. З цією метою фрагменти теорії множин подають у вигляді аксіоматичної теорії. В основі сучасної теорії множин лежить система аксіом, які приймають без доведення і з яких виводять усі теореми теорії множин. Передумовами створення такої теорії стало відкриття деяких парадоксів (антиномій, суперечностей) так званої «наївної» теорії множин. Серед таких парадоксів найбільш відомими є парадокси Кантора і Рассела.

Першою аксіоматикою такого роду була система Z Цермело (E. Zermelo, 1908). Однак у цій системі неможливо було природним чином формалізувати деякі розділи математики, і А.Френкель (A. Frenkel, 1922) запропонував доповнити систему Z новим принципом, який назвав аксіомою підстановки. Отриману систему називають системою аксіом Цермело — Френкеля і позначають ZF.

Аксіоми ZFC

[ред. | ред. код]

Порівняння

[ред. | ред. код]

Дві множини рівні тоді й тільки тоді, коли вони мають одні й ті ж елементи.

Існування

[ред. | ред. код]

Існує така множина A, що включає в себе пусту множину {} та для будь-якого належного їй елемента B включає також і множину, сформовану як об'єднання B та її синґлетону {B}.

Існує множина без елементів.

Таку множину зазвичай позначають як ∅ або {} та називають порожньою множиною.

Побудови

[ред. | ред. код]

Для будь-яких множин A та B існує множина C така, що A та B є її єдиними елементами. Множина C позначається {A, B} і називається невпорядкованою парою A та B.

Тобто, якщо A = B, то існує множина C така, що вона складається з одного елемента {A, A} = {A} (який має назву синглетона).

Для будь-якої множини А існує множина B, елементами якої є ті й тільки ті елементи що є підмножинами A.

Якщо ввести відношення підмножини , то формулу можна спростити:

Множину B називають булеаном множини A та позначають .

Для двох множин існує третя, яка включає в себе всі елементи обох, і тільки їх.

З аксіоми прямо випливає, що об'єднання множин також є множиною. Множина B називається об'єднанням A, і позначається A.

Для будь-якої множини А і властивості P існує множина B, елементами якої є ті й тільки ті елементи множини А, які маю властивість P.

Для кожної такої властивості P (предиката, що не використовує символ B), існує окрема аксіома виділення. Тому комплект таких аксіом називають схемою.

Нехай А - множина, і P(x,y) - предикат. Тоді якщо для кожного x існує єдиний y, такий що P(x,y) істинний, тоді існує множина всіх y, для яких знайдеться такий x ∈ A, що P(x,y) істинний.

Впорядкування

[ред. | ред. код]

В будь-якій непорожній множині А є елемент B, що перетин А та B є порожньою множиною.

Якщо ввести операцію перетину множин , то формулу можна спростити:

Для довільного сімейства непорожніх множин, що не перетинаються, існує множина, яка має рівно один спільний елемент з кожною множиною даного сімейства, навіть якщо множин у сімействі нескінченно багато і невизначено правило вибору елемента з кожної множини.

Надлишковість

[ред. | ред. код]

Див. також

[ред. | ред. код]

Джерела

[ред. | ред. код]


{{bottomLinkPreText}} {{bottomLinkText}}
Теорія множин Цермело — Френкеля
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?