For faster navigation, this Iframe is preloading the Wikiwand page for Власні вектори та власні значення.

Власні вектори та власні значення

Матеріал з Вікіпедії — вільної енциклопедії.

Ця стаття містить правописні, лексичні, граматичні, стилістичні або інші мовні помилки, які треба виправити. Ви можете допомогти вдосконалити цю статтю, погодивши її із чинними мовними стандартами.
На зображенні ми бачимо транформацію зсуву, що відбувається з Джокондою. Синій вектор змінює напрям, а червоний — ні. Тому червоний є власним вектором такого перетворення, а синій — ні. Через те, що червоний вектор ні розтягнувся, ні стиснувся, його власне значення дорівнює одиниці. Всі вектори колінеарні червоному теж власні.

Вла́сний ве́ктор (англ. eigenvector) квадратної матриці вла́сним зна́ченням (англ. eigenvalue) ) — це ненульовий вектор , для якого виконується співвідношення

де це певний скаляр, тобто дійсне або комплексне число.

Тобто, власні вектори матриці  — це ненульові вектори, які під дією лінійного перетворення, що задається матрицею не міняють напрямку, але можуть змінювати довжину на коефіцієнт .

Матриця розмірами має не більше власних векторів, та власних значень, що відповідають їм.

Співвідношення (*) має сенс також для лінійного оператора у векторному просторі Якщо цей простір — скінченновимірний, то оператор можна записати у вигляді матриці відносно до певного базису

Оскільки власні вектори і власні значення означено без застосування координат, вони не залежать від вибору базису. Тому подібні матриці мають однакові власні значення.

Приклади

[ред. | ред. код]
  • це одинична матриця. Оскільки для довільного вектора виконується довільний ненульовий вектор є власним вектором із власним значенням

Власні значення і спектр матриць

[ред. | ред. код]

Провідну роль у розумінні власних значень матриць відіграє характеристичний поліном матриці. Власні значення матриці і тільки вони є коренями характеристичного полінома матриці :

p(λ) є поліномом степеня , отже за основною теоремою алгебри, існує рівно комплексних власних значень, враховуючи їх кратності.

Отже, матриця має не більше ніж власних значень (але безліч власних векторів для кожного з них).

Запишемо характеристичний поліном через його корені:

Кратність кореня характеристичного полінома матриці називається алгебраїчною кратністю власного значення .

Сукупність усіх власних значень матриці або лінійного оператора у скінченновимірному векторному просторі називається спектром матриці або лінійного оператора. (Ця термінологія видозмінюється для нескінченновимірних векторних просторів: у загальному випадку, до спектра оператора можуть належати які не є власними значеннями.)

Завдяки зв'язку характеристичного полінома матриці з її власними значеннями, останні ще називають характеристичними числами матриці.

Власний простір та кратність

[ред. | ред. код]

Для кожного власного значення , отримаємо свою систему рівнянь:

що матиме лінійно незалежних розв'язків.

Сукупність усіх розв'язків системи утворює лінійний підпростір розмірності та називається вла́сним про́стором (англ. eigenspace) матриці з власним значенням .

Розмірність власного простору називається геометричною кратністю відповідного власного значення .

Всі власні простори є інваріантними підпросторами для .

Якщо існують принаймні два лінійно-незалежні власні вектори з однаковим власним значенням то таке власне значення називається виродженим. Ця термінологія використовується переважно у тому разі, якщо геометрична й алгебраїчна кратності власних значень збігаються, наприклад, для ермітових матриць.

Властивості

[ред. | ред. код]
  • Для будь-якої матриці з комплексних чисел існує хоча б один власний вектор.
  • Якщо  — власні вектори матриці із попарно відмінними власними значеннями, то ці вектори є лінійно незалежні.
  • Якщо матриця розміру n×n, подібна до деякої діагональної матриці, то вона має n лінійно незалежних векторів.
  • Якщо матриці є переставними, то в них існує спільний власний вектор:

Розклад матриці за допомогою власних векторів

[ред. | ред. код]
  • Якщо квадратна матриця розміру n×n, а  — лінійно незалежні власні вектори матриці , тоді справедлива формула:

де  — квадратна матриця розміру n×n, -тий стовпець якої є вектор , а  — це діагональна матриця з відповідними значеннями .

Проблеми власних значень

[ред. | ред. код]

Проблема власних значень має назву задача знаходження власних векторів та чисел матриці.

За означенням (з допомогою характеристичного рівняння) можна знаходити тільки власні значення матриць розмірності менш ніж п'ять. Характеристичне рівняння має степінь рівний степеню матриці. Для більших степенів знаходження розв'язків рівняння стає дуже проблематичним, тому використовують різні чисельні методи

Різні задачі вимагають отримання різної кількості власних значень. Тому розрізняють кілька проблем пошуку власних значень, для кожної з яких використовують свої методи.

  • Повна — знайти всі власні значення
  • Часткова — знайти кілька власних значень
    1. Максимальне чи мінімальне за модулем власні значення.
    2. Два максимальні власні значення
    3. Найближче до даного власне значення.

Здавалось б що часткова проблема власних значень є частковою проблемою повної, і вирішується тими ж методами що і повна. Проте, методи що застосовуються до часткових задач набагато ефективніші, тому можуть застосовуватись до матриць великої розмірності (наприклад в ядерній фізиці виникають проблеми знаходження власних значень для матриць розмірності ).

Метод Якобі

[ред. | ред. код]

Одним з найстаріших та найзагальніших підходів до розв'язання повної проблеми власних значень є метод Якобі, що вперше був опублікований в 1846.

Метод застосовують до симетричних матриць.

Це простий ітеративний алгоритм, у якому матриця зі власними векторами обчислюється послідовністю множень.

Див. також

[ред. | ред. код]

Література

[ред. | ред. код]
  • Власні числа та власні вектора // Вища математика в прикладах і задачах / Клепко В.Ю., Голець В.Л.. — 2-ге видання. — К. : Центр учбової літератури, 2009. — С. 58. — 594 с.
  • Гантмахер Ф. Р. Теорія матриць. — 2024. — 400+ с.(укр.)
  • Гельфанд И. М. Лекции по линейной алгебре. — 5-е. — Москва : Наука, 1998. — 320 с. — ISBN 5791300158.(рос.)
  • Н.С. Бахвалов, Н.П.Жидков, Г.М. Кобельков. Численные методы. (Проблеми власних значень)


{{bottomLinkPreText}} {{bottomLinkText}}
Власні вектори та власні значення
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?