For faster navigation, this Iframe is preloading the Wikiwand page for Гільбертів простір.

Гільбертів простір

Матеріал з Вікіпедії — вільної енциклопедії.

Гільбертів простір
Названо на честь Давид Гільберт
Зображує Гільбертів простір з відтворювальним ядромd і гільбертів простір
Підтримується Вікіпроєктом Вікіпедія:Проєкт:Математика
CMNS: Гільбертів простір у Вікісховищі
Стан вібруючої струни можна змоделювати як точку у гільбертовому просторі. Декомпозиція вібруючої струни на її вібрації в різних обертонах задається проєкцією точки на координатні осі в просторі.

Гі́льбертів про́стір (на честь Давида Гільберта) — це узагальнення поняття евклідового простору на нескінченновимірний випадок. Є лінійним простором над полем дійсних або комплексних чисел (прийменник «над» означає, що у такому просторі дозволені операції множення на скаляри із відповідних полів), із визначеним скалярним добутком. Останній дозволяє:

  1. вводити поняття, аналогічні звичним поняттям ортогональності і кута;
  2. визначити метрику, відносно якої гільбертів простір є повним метричним простором.

Гільбертові простори часто виникають у математиці та фізиці — як правило, як функціональні простори. Вперше вони досліджувалися з цієї точки зору в першому десятилітті 20-го століття Давидом Гільбертом, Ерхардом Шмідтом і Фріджесом Рісом. Гільбертові простори є незамінними інструментами в теорії диференціальних рівнянь у частинних похідних, квантовій механіці, аналізі Фур'є (який включає застосування до обробки сигналів і теплопередачі) та ергодичній теорії (яка формує математичну основу термодинаміки). Джон фон Нейман ввів термін «Гільбертовий простір» для абстрактної концепції, яка лежить в основі багатьох із цих різноманітних застосувань. Успіх методів простору Гільберта започаткував дуже плідну еру функціонального аналізу. Окрім класичних евклідових векторних просторів, прикладами гільбертових просторів є простори квадратично-інтегрованих функцій, простори послідовностей, простори Соболєва, що складаються з узагальнених функцій, і простори Харді голоморфних функцій.

Геометрична інтуїція відіграє важливу роль у багатьох аспектах теорії гільбертового простору. Так, у гільбертовому просторі справедливі точні аналоги теореми Піфагора і правила паралелограма. На глибшому рівні — перпендикулярна проекція на лінійний підпростір або підпростір (аналог «опускання висоти» в трикутнику) відіграє значну роль у вирішенні проблем оптимізації. Елемент гільбертового простору може бути однозначно заданий його координатами відносно ортонормованого базису, за аналогією з декартовими координатами в класичній геометрії. Коли цей базис є зліченно-нескінченним, це дозволяє ототожнити гільбертовий простір з простором нескінченних послідовностей, які сумуються квадратами. Останній простір часто в старій літературі називають простором Гільберта.

Означення

[ред. | ред. код]

Гільбертовим простором називається[1][2] векторний простір над полем дійсних або комплексних чисел разом зі скалярним добутком — функцією від двох змінних (або , у випадку використання поля комплексних чисел), що задовольняє такі умови:

  1. для кожного
  2. тоді і лише тоді, коли
  3. для довільних трьох
  4. , де ,  — елемент скалярного поля. ( або )
  5. Для довільної послідовності , для якої виконано (умова фундаментальності)
,
знайдеться елемент , що для нього
.
Тоді кажуть, що є границею послідовності .

Наведене вище означення однаково застосовне як для випадку простору над дійсними числами, так і над комплексними; досить зауважити, що у першому випадку в умові 5 маємо просто симетричність скалярного добутку: .

Іноді також вимагається, щоб для розмірності простору виконувалось , хоча, очевидно, евклідові (скінченновимірні) простори можна розглядати як гільбертові без жодних додаткових застережень.

Слід зазначити, що умова 6 означає повноту простору відносно норми, заданої, як (те, що наведена функція справді є нормою, випливає із вказаних вище властивостей скалярного добутку); враховуючи лінійність, маємо, що кожен гільбертів простір є одночасно банаховим простором (тобто, повним нормованим векторним простором) із нормою .

Гільбертів простір є узагальненням для випадку нескінченної розмірності як евклідового простору так і ермітового простору

Передгільбертів простір — векторний простір зі скалярним добутком (умови 1-5). Умови повноти простору 6 немає, тому він, загалом, не є банаховим.

Лінійне відображення між двома (комплексними) гільбертовими просторами називається ізометрією, якщо воно зберігає (ермітовий) скалярний добуток, тобто для будь-яких векторів виконується рівність За допомогою тотожності паралелограма,

(випливає із властивостей скалярного добутку і означення норми у гільбертовому просторі;  — довільні) доводиться, що є ізометрією тоді і тільки тоді, коли воно зберігає норму, тобто для будь-якого Ізометрія між двома гільбертовими просторами, що є бієкцією, називається ізоморфізмом гільбертових просторів.

Приклади

[ред. | ред. код]

1. Простір що складається зі збіжних послідовностей комплексних чисел — тобто, послідовностей, для яких

із ермітовим скалярним добутком

є комплексним гільбертовим простором. Якщо обмежитися лише послідовностями з дійсними членами, то одержимо дійсний гільбертів простір. Те, що тобто ряд збігається — не очевидний факт, що потребує доведення. Збіжність ряда випливає із нерівності Коші-Буняковського, застосованої до перших членів послідовностей і Отож, отримуємо, що

У курсі функціонального аналізу доводиться також, що простір  — повний і, таким чином, задовольняє всім аксіомам гільбертового простору.

2. Гільбертів простір квадратично-інтегрованих за Лебегом функцій на відрізку утворюється з лінійного простору неперервних комплекснозначних функцій на цьому відрізку за операцією поповнення. Наведемо лише означення ермітового скалярного добутку на :

Ортонормальні базиси: координати у гільбертовому просторі

[ред. | ред. код]

У будь-якому гільбертовому просторі можна ввести систему координат, що узагальнюють декартові координати на площині або в звичайному тривимірному евклідовому просторі. Це досягається за допомогою вибору ортонормального базису в

Система векторів гільбертового простору що індексується множиною називається ортогональною, якщо для будь-яких і ортонормальною, якщо додатково для будь-якого

Отже, ортонормальна система складається з попарно ортогональних векторів гільбертового простору одиничної довжини. Система векторів називається повною, якщо множина їх скінчених лінійних комбінацій — щільна у

Повна ортонормальна система векторів гільбертового простору називається ортонормальним базисом у Повнота ортонормальної системи векторів перевіряється за допомогою рівності Парсеваля, див. нижче.

Координати вектора відносно даного ортонормального базису — це скаляри Вектор повністю визначений своїми координатами і може бути формально розкладений за елементами ортонормального базису:

Сепарабельні гільбертові простори утворюють найважливіший клас нескінченновимірних гільбертових просторів. Вони можуть бути охарактеризовані як такі, в яких можна обрати ортонормальний базис із зліченної множини векторів. Виявляється, що за обранням ортонормального базису будь-який (нескінченовимірний) сепарабельний гільбертів простір стає ізоморфним до

Дійсно, розгляньмо відображення

яке будь-якому вектору ставить у відповідність послідовність його координат відносно ортонормального базису Тоді  — це лінійне відображення, і потрібно ще переконатися, що воно є ізометрією з образом Ці властивості випливають з наступної рівності Парсеваля.

Рівність Парсеваля

[ред. | ред. код]

Припустимо, що  — це скінченна або зліченна ортонормальна система векторів у гільбертовому просторі Повнота цієї системи еквівалентна виконанню наступної рівності для всіх векторів

де сума розповсюджується на всі елементи даної системи векторів. У будь-якому разі, ряд у лівій частині цієї рівності збігається і його сума не перевищує праву частину, цей факт називається нерівністю Бесселя.

Рівність Парсеваля вперше з'явилась у дослідженні рядів Фур'є неперервних функцій на скінченному інтервалі у такому вигляді:

де
 — коефіцієнти Фур'є дійсної функції За елементарними перетвореннями, з цього випливає, що комплексні експоненціальні функції утворюють ортонормальний базис у означеному вище комплексному гільбертовому просторі

Див. також

[ред. | ред. код]

Примітки

[ред. | ред. код]
  1. Архівована копія. Архів оригіналу за 15 червня 2013. Процитовано 22 лютого 2013.((cite web)): Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title (посилання)
  2. В. М. Кадец, Курс функционального анализа, Х:Видавництво ХНУ, 2004 — с.290

Література

[ред. | ред. код]
{{bottomLinkPreText}} {{bottomLinkText}}
Гільбертів простір
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?