For faster navigation, this Iframe is preloading the Wikiwand page for Γ函数.

Γ函数

Γ函數在实数定义域上的函數圖形

數學中,函数伽瑪函數;Gamma函数),是階乘函數在實數複數域上的擴展。如果正整數,則:

根据解析延拓原理,伽瑪函數可以定義在除去非正整數的整個複數域上:

数学家勒讓德首次使用了希腊字母Γ作为该函数的记号。在機率論组合数学中此函數很常用。

定義

[编辑]

函數可以通过欧拉(Euler)第二类积分定義:

复数,我们要求

函數还可以通过对泰勒展开解析延拓到整个复平面

这样定义的函數在全平面除了以外的地方解析。

函數也可以用无穷乘积的方式表示:

这说明是亚纯函数,而是全纯函数。

历史動機

[编辑]

Γ函數本身可以被看作是一個下列插值問題的解:

『找到一個光滑曲線連接那些由 所給定的點,並要求要為正整數』

由前幾個的階乘清楚地表明這樣的曲線是可以被畫出來的,但是我們更希望有一個精確的公式去描述這個曲線,並讓階乘的操作不會依賴於值的大小。而最簡單的階乘公式 不能直接應用在值為分数的時候,因為它被限定在值為正整數而已。相對而言,并不存在一個有限的關於加總、乘積、冪次、指數函數或是對數函數可以表達 ,但是是有一個普遍的公式藉由微積分的積分與極限去表達階乘的,而 Γ函數就是那個公式。[1]

階乘有無限多種的連續擴張方式將定義域擴張到非整數:可以通過任何一組孤立點畫出無限多的曲線。Γ函數是實務上最好的一個選擇,因為是解析的(除了非正整數點),而且它可以被定義成很多種等價形式。然而,它並不是唯一一個擴張階乘意義的解析函數,只要給予任何解析函數,其在正整數上為零,像是 ,會給出其他函數有著階乘性質。

無窮乘積

[编辑]

函數可以用無窮乘積表示:

其中欧拉-马歇罗尼常数

Γ積分

[编辑]

递推公式

[编辑]

函数的递推公式为:

对于正整数,有

可以说函数是階乘的推廣。

递推公式的推导

[编辑]

我们用分部积分法来计算这个积分:

时,。当趋于无穷大时,根据洛必达法则,有:

.

因此第一项变成了零,所以:

等式的右面正好是, 因此,递推公式为:

.

重要性质

[编辑]
  • 時,
  • 歐拉反射公式(余元公式):
.
由此可知当时,.
  • 乘法定理:
.
  • 此外:
.
  • 使用乘法定理推導的關係:

[2]

此式可用來協助計算t分布機率密度函數、卡方分布機率密度函數、F分布機率密度函數等的累計機率。

  • 極限性質

對任何實數α

斯特靈公式

[编辑]
Γ函數與斯特靈公式
由于已知的技术原因,图表暂时不可用。带来不便,我们深表歉意。
(藍色)、(橘色),數字越大會越趨近。但會在負值則會因為出現虛數而無法使用。

斯特靈公式能用以估計函数的增長速度。公式為:

其中e約等於2.718281828459。

特殊值

[编辑]

连分数表示

伽马函数也可以在复数域表示为两个连分数之和[3]

导数

[编辑]
Γ函數的微分
由于已知的技术原因,图表暂时不可用。带来不便,我们深表歉意。
Γ函數(藍色)、Γ函數的微分(橘色),其中,大於50與小於-20的部分被截掉。

對任何複數z,滿足 Re(z) > 0,有

於是,對任何正整數 m

其中γ是歐拉-馬歇羅尼常數

复数值

[编辑]

解析延拓

[编辑]
Γ函數的絕對值函數圖形

注意到在函數的積分定義中若取為實部大於零之複數、則積分存在,而且在右半複平面上定義一個全純函數。利用函數方程

並注意到函數在整個複平面上有解析延拓,我們可以在時設

從而將函數延拓為整個複平面上的亞純函數,它在有單極點,留數為

程式實現

[编辑]

許多程式語言或試算表軟體有提供Γ函数或對數的Γ函数,例如EXCEL。而對數的Γ函数還要再取一次自然指數才能獲得Γ函数值。例如在EXCEL中,可使用GAMMALN函数,再用EXP[GAMMALN(X)],即可求得任意實数的伽玛函数的值。

  • 例如在EXCEL中:EXP[GAMMALN(4/3)]=0.89297951156925

而在沒有提供Γ函数的程式環境中,也能夠過泰勒級數或斯特靈公式等方式來近似,例如Robert H. Windschitl在2002年提出的方法,其在十進制可獲得有效數字八位數的精確度[4],已足以填滿單精度浮點數的二進制有效數字24位:

参见

[编辑]

參考文獻

[编辑]
  1. ^ P. J., Davis. Leonhard Euler's Integral: A Historical Profile of the Gamma Function. American Mathematical Monthly. 1959 [2023-01-01]. doi:10.2307/2309786. (原始内容存档于2023-01-01). 
  2. ^ Mada, L. Relations of the Gamma function. R code on Github. Code publicly available on Github [Personal Research]. 2020-04-24 [2020-04-24]. (原始内容存档于2021-04-02). Relations of the Gamma function 
  3. ^ Exponential integral E: Continued fraction representations. [2023-01-01]. (原始内容存档于2022-11-09). 
  4. ^ Viktor T. Toth. "Programmable Calculators: Calculators and the Gamma Function". 2006 [2018-11-18]. (原始内容存档于2007-02-23). 

外部链接

[编辑]
{{bottomLinkPreText}} {{bottomLinkText}}
Γ函数
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?