For faster navigation, this Iframe is preloading the Wikiwand page for 3-磷酸甘油酸.

3-磷酸甘油酸

此条目缺少或没有列出参考或来源,或者有未能查证的内容。 (2009年10月2日)维基百科所有的内容都应该可供查证,化学类条目亦需严谨。请协助添加来自可靠来源的引用以改善这篇化学类条目无法查证的内容可能被提出异议而移除。
此条目可参照英语维基百科相应条目来扩充。 (2015年8月25日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记((Translated page))标签。
3-磷酸甘油酸
IUPAC名
(2R)-2-Hydroxy-3-phosphonooxypropanoic acid
识别
CAS号 820-11-1  ☒N
PubChem 439183
ChemSpider 388326
SMILES
 
  • C([C@H](C(=O)O)O)OP(=O)(O)O
ChEBI 17794
性质
化学式 C3H7O7P
摩尔质量 186.06 g·mol−1
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

3-磷酸甘油酸(英语:3-phosphoglycerate, 3PGglycerate 3-phosphate GP)是生物细胞中常见的分子之一,也是糖解作用卡尔文循环过程里的中间产物。(注:在卡尔文循环当中简写为PGA)

在糖解作用中,3-磷酸甘油酸是由1,3-双磷酸甘油酸磷酸甘油酸激酶(Phosphoglycerate kinase)的催化中产生的。每一分子3-双磷酸甘油酸会使一分子的ADP转变成为的ATP,原理是接在1,3-双磷酸甘油酸上的两个磷酸根,其中有一个转移到ADP之上。这个反应需要离子(Mg2+)的帮助。

接下来3-磷酸甘油酸将会在磷酸甘油酸变位酶(Phosphoglycerate)的催化下生成2-磷酸甘油酸,在此反应中,原本接在3-磷酸甘油酸,即己催化,下生成2-磷酸甘油酸的碳上的磷酸根,将会转移到变位酶上;然后原本在变位酶上的磷酸根,则会接到3-磷酸甘油酸的碳上,反应前后的变位酶整体结构没有变化。与上一步骤相同,此反应同样需要Mg2+

糖酵解

在糖酵解途径中,1,3-二磷酸甘油酸在偶联反应中去磷酸化形成 3-磷酸甘油酸,通过底物水平磷酸化产生两个ATP[1] 然后,3-PGA 分子上留下的单个磷酸基团从末端碳移动到中心碳,产生 2-磷酸甘油酸酯。这种磷酸基重定位由磷酸甘油酸变位酶催化,该酶也催化逆反应。 [2]

1,3-二磷酸D甘油酸酯 3-磷酸甘油酸激酶 3-磷酸D甘油酸酯 磷酸甘油变位酶 2-磷酸D甘油酸酯
   
腺苷二磷酸 ATP
腺苷二磷酸 ATP
   
  3-磷酸甘油酸激酶   磷酸甘油变位酶

卡尔文-本森循环

不依赖于光的反应(也称为卡尔文-本森循环)中,合成了两个 3-磷酸甘油酸分子。 RuBP是一种 5 碳糖,在rubisco酶的催化下进行碳固定,变成不稳定的 6 碳中间体。 然后,该中间体被裂解成两个独立的 3-碳 3-PGA 分子。 [3] 所得 3-PGA 分子之一继续通过 Calvin-Benson 循环再生为 RuBP,而另一个则通过两个步骤还原形成一分子甘油醛 3-磷酸(G3P):将 3-PGA磷酸化为1, 3-二磷酸甘油酸通过磷酸甘油酸激酶(与糖酵解中的反应相反)生成,随后由甘油醛 3-磷酸脱氢酶催化生成 G3P。 [4] [5] [6] G3P 最终反应形成糖,如葡萄糖果糖或更复杂的淀粉[7] :156[4] [5]

氨基酸合成

3-磷酸甘油酯(由 3-磷酸甘油酸形成)也是丝氨酸的前体,丝氨酸反过来又可以通过同型半胱氨酸循环产生半胱氨酸甘氨酸[8] [9] [10]

测量

3-磷酸甘油酸可以使用纸色谱[11]以及柱色谱和其他色谱分离方法来分离和测量。 [12] 它可以使用气相色谱法液相色谱质谱法进行鉴定,并已针对使用串联质谱技术的评估进行了优化。 [13] [14] [15]

参考文献

  1. ^ Rye, Connie; Wise, Robert; Jurukovski, Vladimir; DeSaix, Jean; Choi, Jung; Avissar, Yael. https://openstax.org/books/biology/pages/7-2-glycolysis |chapterurl=缺少标题 (帮助). Glycolysis. OpenStax College. 2016 [2023-08-28]. (原始内容存档于2014-05-30). Rye, Connie; Wise, Robert; Jurukovski, Vladimir; DeSaix, Jean; Choi, Jung; Avissar, Yael (2016). "Glycolysis"页面存档备份,存于互联网档案馆). Biology页面存档备份,存于互联网档案馆). OpenStax College.
  2. ^ Rose, Z.B.; Dube, S. Rates of phosphorylation and dephosphorylation of phosphoglycerate mutase and bisphosphoglycerate synthase. Journal of Biological Chemistry. 1976, 251 (16): 4817–4822. PMID 8447. doi:10.1016/S0021-9258(17)33188-5可免费查阅. Rose, Z.B.; Dube, S. (1976). "Rates of phosphorylation and dephosphorylation of phosphoglycerate mutase and bisphosphoglycerate synthase". Journal of Biological Chemistry. 251 (16): 4817–4822. doi:10.1016/S0021-9258(17)33188-5. PMID 8447页面存档备份,存于互联网档案馆).
  3. ^ Andersson, I. Catalysis and regulation in Rubisco. Journal of Experimental Botany. 2008, 59 (7): 1555–1568. PMID 18417482. doi:10.1093/jxb/ern091可免费查阅. Andersson, I. (2008). "Catalysis and regulation in Rubisco". Journal of Experimental Botany. 59 (7): 1555–1568. doi:10.1093/jxb/ern091. PMID 18417482页面存档备份,存于互联网档案馆).
  4. ^ 4.0 4.1 Moran, L. The Calvin Cycle: Regeneration. Sandwalk. 2007 [11 May 2021]. (原始内容存档于2022-09-27). Moran, L. (2007). "The Calvin Cycle: Regeneration"页面存档备份,存于互联网档案馆). Sandwalk. Retrieved 11 May 2021.
  5. ^ 5.0 5.1 Pettersson, G.; Ryde-Pettersson, Ulf. A mathematical model of the Calvin photosynthesis cycle. European Journal of Biochemistry. 1988, 175 (3): 661–672. PMID 3137030. doi:10.1111/j.1432-1033.1988.tb14242.x. Pettersson, G.; Ryde-Pettersson, Ulf (1988). "A mathematical model of the Calvin photosynthesis cycle". European Journal of Biochemistry. 175 (3): 661–672. doi:10.1111/j.1432-1033.1988.tb14242.x. PMID 3137030页面存档备份,存于互联网档案馆).
  6. ^ Fridlyand, L.E.; Scheibe, R. Regulation of the Calvin cycle for CO2 fixation as an example for general control mechanisms in metabolic cycles. Biosystems. 1999, 51 (2): 79–93. PMID 10482420. doi:10.1016/S0303-2647(99)00017-9. Fridlyand, L.E.; Scheibe, R. (1999). "Regulation of the Calvin cycle for CO2 fixation as an example for general control mechanisms in metabolic cycles". Biosystems. 51 (2): 79–93. doi:10.1016/S0303-2647(99)00017-9. PMID 10482420页面存档备份,存于互联网档案馆).
  7. ^ Leegood, R.C.; Sharkey, T.D.; von Caemmerer, S. (编). Photosynthesis: Physiology and Metabolism. Advances in Photosynthesis 9. Kluwer Academic Publishers. 2000. ISBN 978-0-7923-6143-5. doi:10.1007/0-306-48137-5. Leegood, R.C.; Sharkey, T.D.; von Caemmerer, S., eds. (2000). Photosynthesis: Physiology and Metabolism. Advances in Photosynthesis. Vol. 9. Kluwer Academic Publishers. doi:10.1007/0-306-48137-5. ISBN 978-0-7923-6143-5.
  8. ^ Igamberdiev, A.U.; Kleczkowski, L.A. The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism. Frontiers in Plant Science. 2018, 9 (318): 318. PMC 5861185可免费查阅. PMID 29593770. doi:10.3389/fpls.2018.00318可免费查阅. Igamberdiev, A.U.; Kleczkowski, L.A. (2018). "The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism"页面存档备份,存于互联网档案馆). Frontiers in Plant Science. 9 (318): 318. doi:10.3389/fpls.2018.00318. PMC 5861185页面存档备份,存于互联网档案馆. PMID 29593770页面存档备份,存于互联网档案馆).
  9. ^ Ichihara, A.; Greenberg, D.M. Pathway of Serine Formation from Carbohydrate in Rat Liver. PNAS. 1955, 41 (9): 605–609. Bibcode:1955PNAS...41..605I. JSTOR 89140. PMC 528146可免费查阅. PMID 16589713. doi:10.1073/pnas.41.9.605可免费查阅. Ichihara, A.; Greenberg, D.M. (1955). "Pathway of Serine Formation from Carbohydrate in Rat Liver"页面存档备份,存于互联网档案馆). PNAS. 41 (9): 605–609. Bibcode:1955PNAS...41..605I页面存档备份,存于互联网档案馆). doi:10.1073/pnas.41.9.605. JSTOR 89140页面存档备份,存于互联网档案馆). PMC 528146页面存档备份,存于互联网档案馆. PMID 16589713页面存档备份,存于互联网档案馆).
  10. ^ Hanford, J.; Davies, D.D. Formation of Phosphoserine from 3-Phosphoglycerate in Higher Plants. Nature. 1958, 182 (4634): 532–533. Bibcode:1958Natur.182..532H. S2CID 4192791. doi:10.1038/182532a0. Hanford, J.; Davies, D.D. (1958). "Formation of Phosphoserine from 3-Phosphoglycerate in Higher Plants". Nature. 182 (4634): 532–533. Bibcode:1958Natur.182..532H页面存档备份,存于互联网档案馆). doi:10.1038/182532a0. S2CID 4192791.
  11. ^ Cowgill, R.W.; Pizer, L.I. Purification and Some Properties of Phosphorylglyceric Acid Mutase from Rabbit Skeletal Muscle. Journal of Biological Chemistry. 1956, 223 (2): 885–895. PMID 13385236. doi:10.1016/S0021-9258(18)65087-2可免费查阅. Cowgill, R.W.; Pizer, L.I. (1956). "Purification and Some Properties of Phosphorylglyceric Acid Mutase from Rabbit Skeletal Muscle". Journal of Biological Chemistry. 223 (2): 885–895. doi:10.1016/S0021-9258(18)65087-2. PMID 13385236页面存档备份,存于互联网档案馆).
  12. ^ Hofer, H.W. Separation of glycolytic metabolites by column chromatography. Analytical Biochemistry. 1974, 61 (1): 54–61. PMID 4278264. doi:10.1016/0003-2697(74)90332-7. Hofer, H.W. (1974). "Separation of glycolytic metabolites by column chromatography". Analytical Biochemistry. 61 (1): 54–61. doi:10.1016/0003-2697(74)90332-7. PMID 4278264页面存档备份,存于互联网档案馆).
  13. ^ 3-Phosphoglyceric acid (HMDB0000807). Human Metabolome Database. The Metabolomics Innovation Centre. [23 May 2021]. (原始内容存档于2023-07-06). "3-Phosphoglyceric acid (HMDB0000807)"页面存档备份,存于互联网档案馆). Human Metabolome Database. The Metabolomics Innovation Centre. Retrieved 23 May 2021.
  14. ^ Shibayama, J.; Yuzyuk, T.N.; Cox, J.; et al. Metabolic Remodeling in Moderate Synchronous versus Dyssynchronous Pacing-Induced Heart Failure: Integrated Metabolomics and Proteomics Study. PLOS ONE. 2015, 10 (3): e0118974. Bibcode:2015PLoSO..1018974S. PMC 4366225可免费查阅. PMID 25790351. doi:10.1371/journal.pone.0118974可免费查阅. Shibayama, J.; Yuzyuk, T.N.; Cox, J.; et al. (2015). "Metabolic Remodeling in Moderate Synchronous versus Dyssynchronous Pacing-Induced Heart Failure: Integrated Metabolomics and Proteomics Study". PLOS ONE. 10 (3): e0118974. Bibcode:2015PLoSO..1018974S页面存档备份,存于互联网档案馆). doi:10.1371/journal.pone.0118974. PMC 4366225. PMID 25790351页面存档备份,存于互联网档案馆).
  15. ^ Xu, J.; Zhai, Y.; Feng, L. An optimized analytical method for cellular targeted quantification of primary metabolites in tricarboxylic acid cycle and glycolysis using gas chromatography-tandem mass spectrometry and its application in three kinds of hepatic cell lines. Journal of Pharmaceutical and Biomedical Analysis. 2019, 171: 171–179. PMID 31005043. S2CID 125170446. doi:10.1016/j.jpba.2019.04.022. Xu, J.; Zhai, Y.; Feng, L. (2019). "An optimized analytical method for cellular targeted quantification of primary metabolites in tricarboxylic acid cycle and glycolysis using gas chromatography-tandem mass spectrometry and its application in three kinds of hepatic cell lines". Journal of Pharmaceutical and Biomedical Analysis. 171: 171–179. doi:10.1016/j.jpba.2019.04.022. PMID 31005043页面存档备份,存于互联网档案馆). S2CID 125170446.
{{bottomLinkPreText}} {{bottomLinkText}}
3-磷酸甘油酸
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?