For faster navigation, this Iframe is preloading the Wikiwand page for 频谱效率.

频谱效率

频谱效率(英语:Spectral efficiency)是指在数码通讯系统中的带宽限制下,可以传送的资料总量。它是在有限的频谱下,物理层通讯协议(有时是介质访问控制,波道接入协议)可以达到的使用效率的量度。[1]

链路频谱效率

数码通讯系统的链路频谱效率(Link spectral efficiency)的单位是 bit/s/Hz[2] 或(bit/s)/Hz(较少用,但更准确)。其定义为净位元率(有用资讯速率,不包括纠错码)或最大吞吐量除以通讯波道或数据链路的带宽(单位:赫兹)。调制效率定义为总位元率(包括纠错码)除以带宽。

频谱效率通常被用于分析数码调制方式的效率,有时也考虑前向纠错码(forward error correction, FEC)和其他物理层开销。在后一种情况下,1个“位元”特指一个用户位元,FEC的开销总是不包括在内的。

例1:1kHz带宽中可以传送毎秒1000bit的技术,其频谱效率或调制效率均为1 bit/s/Hz。
例2:电话网的V.92调制解调器在模拟电话网上以56,000 bit/s的下行速率和48,000 bit/s的上行速率传输。经由电话交换机的滤波,频率限制在300Hz到3,400Hz之间,带宽相应为 3400 − 300 = 3100 Hz 。频谱效率或调制效率为 56,000/3,100 = 18.1 bit/s/Hz(下行)、48,000/3,100 = 15.5 bit/s/Hz(上行)。

使用FEC 的架空调制方式可达到最大的频谱效率可以利用标本化定理来求得,信号的字母表(计算机科学)利用符号数量M来组合、各符号使用 N = log2 M bit来表示。此情况下频谱效率若不使用编码间干涉的话,无法超过2N bit/s/Hz的效率。举例来说,符号种类有8种、每个各有3bit 的话,频谱效率最高不超过6 bit/s/Hz。

在使用前向纠错编码的情形时频谱效率会降低。比如说使用1/2编码率的FEC时,编码长度会变为1.5倍,频谱效率会降低50%。频谱效率降低的同时FEC可以改善信号的信噪比(并非一定会有改善)。

对某个信噪比通讯回来说、在完全没有传输错误,且编码与调制方式皆处于理想的状况时,其频谱效率的上限可由哈特利定理得出。比如说信噪比1即分贝为0时,无论编码与调制方式如何变化,频谱效率不会超过1 bit/s/Hz。

Goodput(应用层情报使用的量)比一般在此计算的吞吐量还小,其原因为有分组再次传送、超传输协议的架空造成的。

频谱效率这个用语,会产生数值越大的话可以使周波数频谱产生更有效的误解产生。比如手机因为频谱扩散与使用FEC技术使得频谱效率低下,但信噪比不好有时还是可以正常通讯。因此可以使用到比周波带宽数还多的链接、以整体来看其效果可以弥补频谱效率低下的缺点还有过之。如同后面会提到的,具有较为合适尺度代表”单位带宽利用率”单位的bit/s/Hz存在,这是属于码分多工(CDMA)的技术并已成为数码手机的基本构成技术。但是电话线路与有线电视网等由于没有频道相互干扰的问题,其使用的基本上皆为其信噪比下最大频谱效率。

系统频谱效率

无线网络是以系统频谱效率'在有限的无线周波数带宽下可以同时支援的客户数与服务进行量化。其单位为bit/s/Hz/area unitbit/s/Hz/cellbit/s/Hz/site 等进行计量。有可以把系统能同时支援使用者的吞吐量与goodput的总量以通讯回路的带宽(Hz)来表示。这并不单影响使用单一通讯回路的技术,多元连接手法与无线资源管理技术也受到影响,特别是动态无线资源管理可以得到改善。定义最大goodput时,会排除掉通讯回路间的相互干渉与冲突,高阶通讯协定的架空也是忽略不计的。

手机网络的容量也是以1 MHz 周波数带宽上可以同时最大连接线数来表示,即Erlang/MHz/cell、Erlangs/MHz/sector、Erlangs/MHz/km² 等单位。这个数值也影响到讯息编码技术(数据压缩)、在模拟电话网络也有使用。

例: 以频分多址 (FDMA)与固定频道分配(FCA)为基础的手机系统在频率再利用系数是 4的时候、各基地局可以利用的是所有频谱的1/4。根据此推算、最大系统频谱效率(bit/s/Hz/site)是链接频谱效率的 1/4。各基地局使用3个扇形天线将信号分为3扇区时,被称为4/12再利用模式。各部分可以使用全频谱的1/12,因此系统的频谱效率(bit/s/Hz/cell 或 bit/s/Hz/sector)为链接频谱效率的1/12。

即使链接频谱效率(bit/s/Hz)偏低,以 “系统频谱效率”的観点来看,并不一定代表编码效率不好。例如、码分多工(CDMA) 频谱扩散为单一通讯回路(即只有一位使用者)时,频谱效率是不好的,但是由于在同一带宽中有复数的通讯回路存在,因此系统频谱效率非常好。

例: 以W-CDMA 3G 手机系统来说、打电话时最大压缩8,500 bit/s时、会造成 5 MHz 带宽的扩散,此时此连接的吞吐量为8,500/5,000,000 = 0.0017 bit/s/Hz。在这情形下同扇区内可以有同时容纳100通电话(有声音)的进行。由于各基地局以3个方向的扇形天线区分为3个扇区,在频谱扩散后、频率再利用系数会变的比1还小。此时的系统频谱效率为 1 · 100 · 0.0017 = 0.17 bit/s/Hz/site亦或 0.17/3 = 0.06 bit/s/Hz/cell(也可换算成 bit/s/Hz/sector)。

频谱效率可以使用固定/动态频道分配、电力控制、 即被称为Link Adaptatio的无线资源管理技术来进行改善。

比较表

以下为一般通讯系统的频谱效率数值。

一般通讯系统的频谱效率
服务 规格 每秒频道的带宽R

(Mbit/s)

频道的带宽B

(MHz)

链接频谱效率 R/B

(bit/s/Hz)

典型的频率再利用系数 1/K 系统频谱效率

一般 R/B/K 数值 (bit/s/Hz/site)

第二世代手机 (2G) GSM 1993 0.013·8 时隙 = 0.104 0.2 0.52 1/7 0.17
2.75G GSM + EDGE 最大 0.384 通常 0.20 0.2 最大 1.92 通常 1.00 1/7 0.33
2.75G IS-136HS + EDGE 最大 0.384 通常 0.27 0.2 最大 1.92 通常 1.35 1/7 0.45
第三世代手机 (3G) W-CDMA FDD 1997 传到手机时最大 0.384 5 传到手机时最大 0.077 1/7 0.51
3.5G HSDPA 2007 传到手机时最大 14.4 5 传到手机时最大 2.88 1/7 0.71
3.5G HSOPA OFDMA 传到手机时最大 100 10 传到手机时最大 5 1/7 0.71
第三世代携帯电话 (3G) CDMA2000 1x 传到手机时最大 0.144 1.25 传到手机时最大 0.115 1/7 0.51
Wi-Fi IEEE 802.11a/g 2003 最大 54 20 最大 2.7 1/3 0.9
Wi-Fi IEEE 802.11n Draft 2.0 2007 最大 144.4 20 最大 7.22 1/3 2.4
WiMAX IEEE 802.16 2004 96 20 (1.75, 3.5, 7...) 4.8 1/4 1.2
数码广播 DAB 0.576 ~ 1.152 1.712 0.34 ~ 0.67 1/5 0.08 ~ 0.17
数码广播 DAB + SFN 0.576 ~ 1.152 1.712 0.34 ~ 0.67
数码电视 DVB-T 最大 31.67 通常 22.0 8 最大 4.0 通常 2.8 1/5 0.55
数码电视 DVB-T + SFN 最大 31.67 通常 22.0 8 最大 4.0 通常 2.8
数码电视 DVB-H 5.5 ~ 11 8 0.68 ~ 1.4 1/5 0.14 ~ 0.28
数码电视 DVB-H + SFN 5.5 ~ 11 8 0.68 ~ 1.4
光纤用数码电视TV 256-QAM 38 6 6.33 1 6.33
第四代移动通信(LTE) TD-LTE、LTE-FDD 最大下行链路100 20 5 1 5
第五代移动通信(5G NR) 5G NR

(NewRadio)

最大下行链路1000 100 10 1 10

参见

参考文献

  1. ^ G. Miao, J. Zander, K-W Sung, and B. Slimane, Fundamentals of Mobile Data Networks, Cambridge University Press, ISBN 1107143217, 2016.
  2. ^ Sergio Benedetto and Ezio Biglieri. Principles of Digital Transmission: With Wireless Applications. Springer. 1999 [2022-03-09]. ISBN 0-306-45753-9. (原始内容存档于2021-04-28). 
{{bottomLinkPreText}} {{bottomLinkText}}
频谱效率
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?