For faster navigation, this Iframe is preloading the Wikiwand page for 安培环路定律.

安培环路定律

本条目中,向量标量分别用粗体斜体显示。例如,位置向量通常用 表示;而其大小则用 来表示。
安德烈-马里·安培

安培环路定律[1](英语:Ampère's circuital law)常直接简称为“安培定律”,是由安德烈-马里·安培于1826年提出的一条静磁学基本定律。

安培环路定律表明了:在真空载流导线所载有的稳恒电流,与磁感应强度沿着环绕导线的任意闭合回路(环路,closed loop)[注 1]的路径积分(环场积),两者之间的关系为

其中,是环绕着导线的闭合回路,磁感应强度(又称为B场),是微小线元素向量,磁常数是闭合回路所围住的电流。

亦即,在真空中的稳恒电流会产生稳恒磁场,而磁感应强度B沿任意环绕载流导线的闭合路径的线积分值(环场积),等于该选取的环路(安培环路)所包围的总电流值(各个电流的代数和)乘以真空磁导率。

1861年,詹姆斯·麦克斯韦又将这方程重新推导一遍,使得符合电动力学条件,并且发表结果于论文《论物理力线》内。麦克斯韦认为,含时电场会生成磁场,假若电场含时间,则前述安培定律方程不成立,必须加以修正。经过修正后,新的方程称为麦克斯韦-安培方程,是麦克斯韦方程组中的一个方程,以积分形式表示为

其中,是边缘为的任意曲面,是穿过曲面的电流的电流密度电位移是微小面元素向量。

右手定则

载流循环所产生的磁场方向可以使用右手定则来判断。其方法为将拇指外的四根手指向手掌弯的方向视为磁场方向,则拇指所指的方向即为电流的方向。

安培右手定则:将右手的大拇指指向电流方向,再将四根手指握紧电线,则弯曲的方向决定磁场的方向

右手定则也可以用来辨明一条电线四周磁场的方向。对于这用法,右手定则称为“安培右手定则”,或“安培定则”。如右图,安培右手定则表明,假若将右手的大拇指朝着电线的电流方向指去,再将四根手指握紧电线,则四根手指弯曲的方向为磁场的方向。

原版安培环路定律

一条载流导线所载有的电流会产生磁场。

安培环路定律的历史原版形式,连结了磁场与源电流。这定律可以写成两种形式,积分形式和微分形式。根据开尔文-斯托克斯定理(即ℝ³上的斯托克斯公式),对于任意向量

所以,这两种形式是等价的。

积分形式

电流在一个曲面上的通量,等于磁场沿着的边缘闭合回路的路径积分。采用国际单位制(后面会讲述CGS单位制版本),原版安培环路定律的积分形式可以写为[2]

请注意到这方程有些模糊之处,需要特别澄清:

  • 第一,边界曲线的正向与曲面的侧符合右手规则。[注 1]
  • 第二,(固定,)定理之成立与以为边界的的选择无关。[注 2]

安培环路定律可由毕奥-萨伐尔定律和磁场的叠加性证明(请参阅毕奥-萨伐尔定律)。在静磁学中,安培环路定律的角色与高斯定律静电学的角色类似。当系统组态具有适当的对称性时,我们可以利用这对称性,使用安培环路定律来便利地计算磁场。例如,当计算一条直线的载流导线或一个无限长螺线管的磁场时,可以采用圆柱坐标系来匹配系统的圆柱对称性。

微分形式

根据开尔文-斯托克斯定理,这方程也可以写为微分形式。只有当电场不含时间的时候,也就是说,当电场对于时间的偏微分等于零的时候,这方程才成立。采用国际单位制,这方程表示为

磁场的旋度等于(产生该磁场的)传导电流密度

电流分类

电流可以细分为自由电流和束缚电流,而束缚电流又可分类为磁化电流和电极化电流。以方程表示,总电流密度

其中,是自由电流密度或传导电流密度,是磁化电流密度,是电极化电流密度。

从微观而言,所有的电流基本上是一样的。但是,由于实用原因,物理学家会将电流分类为自由电流和束缚电流,对于每一类电流有不同的处理方式。例如,束缚电流通常发生于原子尺寸。物理学家或许想要使用较简单但适用于较大尺寸状况的理论。因此,较微观的安培定律,以B场和微观电流(包括自由电流和束缚电流)来表达的定律,有时候会被替代为等价的形式,以附属磁场(又称为H场)和自由电流来表达的形式。后面证明段落,会有详细的关于自由电流和束缚电流的定义,与两种表述等价的证明。

自由电流

通常在教科书内所提及的单独的“电流”二字,都是指的自由电流,即自由载流子(电子及阴阳离子)的定向移动。例如,通过一条导线或一个电池的电流。自由电流与后面提到的束缚电流明显不同,后者出现于可以被磁化电极化的宏观物质里(每一种物质都会或多或少地被电极化或磁化)。

磁化电流

当一个物质被磁化的时候(例如,将此物质置入外磁场),电子仍旧会束缚于它们所属的原子。但是,它们的物理行为会有所改变(会与感受到的磁场耦合),产生微观电流。将这些电流总合在一起,会有如同宏观电流一般的效应,环绕于磁化物体内部或表面。称这电流为磁化电流,是束缚电流的一部分。称磁化电流的密度为“体磁化电流密度”,用方程定义为

其中,磁化强度(单位体积的磁偶极矩)。

电极化电流

束缚电流的另外一种来源是电极化电流。感受到电场的作用,可电极化物质内的正束缚电荷和负束缚电荷会以原子距离相互分离。假设电场随着时间而变化,束缚电荷也会随着时间而移动,因而产生“电极化电流”,称其密度为“电极化电流密度”,用方程定义为

其中,电极化强度

注意到电极化强度的定义式

其中,是“体束缚电荷密度”。

取电极化电流密度的散度

所以,电极化电流密度与体束缚电荷密度的关系为

原版安培环路定律的不足处

原版安培环路定律只适用于静磁学。在电动力学里,当物理量含时间,有些细节必须仔细检查。思考安培方程,

其中,是B场,磁常数是总电流。

散度于这方程,则会得到

应用一个向量恒等式旋度的散度必定等于零。所以,

这意味着电流密度的散度等于零:

静磁学内,这是正确的。但是,出了静磁学范围,当电流不稳定的时候,这就不一定正确了。

一个正在充电的电容器,左边的圆形金属板,被一个假想的封闭圆柱表面包围。这圆柱表面的右边表面处于电容器的两块圆形金属板之间,左边表面处于最左边。没有任何传导电流通过表面,而有电流通过表面

举个经典例子,如图右,一个正在充电的电容器,其两片金属板会随着时间分别累积异性电荷。设定表面的边缘为闭合回路。应用安培定律,

在这里,是通过任意曲面的电流,只要这曲面符合一个条件:边缘为闭合回路。所以,这任意曲面可以是表面,而;或者这任意曲面可以是封闭圆柱表面减去左边表面,而由于通过这任意曲面的电流是。选择不同的曲面会得到不同的答案,这在物理学里,是绝对不允许发生的事。

为了解决上述难题,安培环路定律必须加以修改延伸。应用流体力学的方法,麦克斯韦摹想磁场为电介质涡旋vortex)大海,而位移电流即为大海内的电极化电流[3]。在他于1861年发表的论文《论物理力线》里面,麦克斯韦将位移电流项目加入了安培定律[4]

位移电流

自由空间内,位移电流跟电场随着时间的变化率有关;而在电介质内,上述贡献仍旧存在,但另外一个重要贡献则与电介质的电极化有关。虽然电荷不能自由地运动于电介质,感受到外电场的作用,分子的束缚电荷可以做微小的运动。因此,正值和负值的束缚电荷会产生小距离的分离,造成电极化的增加,这可以用变量电极化强度来表达。电极化强度随着时间的变化所产生的效应就是电极化电流。

位移电流密度定义为[2]

其中,电位移,定义为

其中,电常数是电极化强度。

所以,位移电流密度分为两个部分:

这方程右手边的第一个项目是麦克斯韦修正项目,在任何地方都可存在,甚至在真空也可以存在。麦克斯韦修正项目并不涉及任何真实的电荷运动,但是,它描述一个含时电场的物理行为,就好像是真实的电流。第二个项目是电极化电流密度,与电介质内单独分子的极化性有关。

原本定律的延伸:麦克斯韦-安培方程

将麦克斯韦修正项目加入安培方程:

 ;

或者,使用H场和位移电流来表达,

这就是麦克斯韦-安培方程,可以补救原本安培环路定律的限制。

假若使用B场的麦克斯韦-安培方程,由于习惯,时常会称项目为位移电流密度。由于增添了位移电流,麦克斯韦能够推论(正确地)光波是一种电磁波(请参阅电磁波条目)。

等价证明

CGS单位制的安培方程

采用CGS单位制,安培方程的积分形式,包括麦克斯韦修正项目,可以写为

其中,光速

其微分形式可以写为

备注

  1. ^ 在物理学上,英语 loop 和 circuit 在特殊语境下同义;在以下内文中,汉语对此术语 closed loop 的同义用词另有:环路、回路、循环、环线、回线,或是闭环、闭路。

参见

注释

  1. ^ 沿着闭合回路线积分的方向有两种(顺时针方向逆时针方向)。还有,是通过边缘为闭合回路的曲面的净自由电流,包括以某方向通过的电流,减去以相反方向通过的电流。但是,两种方向中,任何一种都可以选为正值。为了澄清这些模糊之处,必须使用右手定则:当右手食指朝着线积分方向指去时,伸直的大拇指会指向微小面元素向量,设定朝着这方向流动的电流为正值。
  2. ^ 通过边缘为闭合回路的曲面有无限多选择(设想在一个闭合铁环上悬跨着一个肥皂泡,假若轻轻地往这个肥皂泡吹一口气,则泡沫的形状会变形)。不过选择哪一曲面都无所谓,因为任何边缘为的曲面皆可被证明为正确的选择。

参考文献

  1. ^ 存档副本. [2022-04-21]. (原始内容存档于2022-04-21). 
  2. ^ 2.0 2.1 David J Griffiths. Introduction to Electrodynamics 3rd Edition. Pearson/Addison-Wesley. 1999: 225, 321-325. ISBN 013805326X. 
  3. ^ Daniel M. Siegel. Innovation in Maxwell's Electromagnetic Theory: Molecular Vortices, Displacement Current, and Light. Cambridge University Press. 2003: 96-98. ISBN 0521533295. 
  4. ^ James C. Maxweel. On Physical Lines of Force (PDF). Philosophical Magazine and Journal of Science. 1961 [2009-08-08]. (原始内容存档 (PDF)于2009-06-12). 

外部链接

{{bottomLinkPreText}} {{bottomLinkText}}
安培环路定律
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?