For faster navigation, this Iframe is preloading the Wikiwand page for 上积.

上积

代数拓扑中,上积杯积(cup product)是将两个度为pq的上循环联接起来,形成度为p+q的复合循环的方法。这定义了上同调中的结合(与分散)分次交换积,将空间X的上同调转变为分次环,称作上同调环。上积由詹姆斯·韦德尔·亚历山大爱德华·切赫哈斯勒·惠特尼于1935–1938年间提出,1944年塞缪尔·艾伦伯格给出了一般定义。

定义

奇异上同调中,上积构造给出了拓扑空间X的分次上同调环上的积。

构造始于上链之积:若p上链,且q上链,则

其中σ是奇异-单纯形, 是S张成的单纯形规范嵌入-单纯形,后者的顶点索引为

非正式地,是σ的第p正面(front face),是σ的第q背面(back face)。

上链的上积的上边缘(coboundary)为

两个上循环的上积仍是上循环,上边缘与上循环(任意顺序)的积仍是上边缘。上积在上同调中引入了双线性运算

性质

上同调中的上积满足以下特性

因此相应的乘法是分次交换的。

上积的函子性体现在以下方面:若

是连续函数,

是上同调中的诱导同态,则

中所有类α、β。也就是说,f *是(分次)环同态

解释

可将上积视作由下面的组合诱导而来:

链复形表示,其中第一个映射是克奈映射,第二个映射由对角诱导。

这个构成传给商,便给出了良定义的上同调映射,这就是上积。这种方法解释了上同调上积的存在,但没有解释同调上积:诱导了映射,但还会诱导映射,后者与我们定义积的方法相反。不过,这在定义下积时是有用的。

上积的这种表达体现了双线性,即

例子

上积可用来区分流形和具有相同上同调群的空间之楔。空间与环面T具有相同的上同调群,但具有不同的上积。在X的情况下,与 相关的上链的乘法是退化的;而在T中,第一个上同调群中的乘法可用于将环面分解为2胞图,从而使积等于Z(更一般地说是M,此处是基模)。

其他定义

上积与微分形式

德拉姆上同调中,微分形式的上积由楔积导出。即,两个微分形式的楔积属于两个原德拉姆类的上积的德拉姆类。

上积与几何相交

环绕数可用链的补上的非零上积定义。这两个链循环在 变形中的补退化为环面和2球的楔和,其有度为1、不为零的上积。

对于定向流形,有几何启发式,即“上积与相交是对偶的”。[1][2]

维定向光滑流形。若两个余维分别是ij的子流形横截着交,那么它们的交又是余维是i + j的子流形。将这些流形的基本同调类的像置于包含(inclusion)之中,就可以得到同调上的双线性积,与上积是庞加莱对偶的,即取庞加莱对则有以下等式:

.[1]

同样,环绕数也可用交来定义,将维数移动1,或者用链之补上的非零上积来定义。

梅西积

梅西积推广了上积,允许定义“高阶环绕数“,即米尔诺不变量。

上积是二元运算。可以定义三元甚至多元的高阶运算,称作梅西积,是上积的推广。它是一种高阶上同调运算,目前只定义了一部分(只定义了部分三元运算)。

另见

参考文献

  1. ^ 1.0 1.1 Hutchings, Michael. Cup Product and Intersections (PDF). (原始内容存档 (PDF)于2023-03-08). 
  2. ^ Ciencias TV, Informal talk in Derived Geometry (Jacob Lurie), 2016-12-10 [2018-04-26], (原始内容存档于2021-12-21) 
  • James R. Munkres, "Elements of Algebraic Topology", Perseus Publishing, Cambridge Massachusetts (1984) ISBN 0-201-04586-9 (hardcover) ISBN 0-201-62728-0 (paperback)
  • Glen E. Bredon, "Topology and Geometry", Springer-Verlag, New York (1993) ISBN 0-387-97926-3
  • Allen Hatcher, "Algebraic Topology页面存档备份,存于互联网档案馆)", Cambridge Publishing Company (2002) ISBN 0-521-79540-0
{{bottomLinkPreText}} {{bottomLinkText}}
上积
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?