For faster navigation, this Iframe is preloading the Wikiwand page for Реній.

Реній

Матеріал з Вікіпедії — вільної енциклопедії.

Реній (Re)
Атомний номер75
Зовнішній вигляд простої речовиниЩільний, сріблясто-білий метал
Властивості атома
Атомна маса (молярна маса)186,207 а.о.м. (г/моль)
Радіус атома137 пм
Енергія іонізації (перший електрон)759,1(7,87) кДж/моль (еВ)
Електронна конфігурація[Xe] 4f14 5d5 6s2
Хімічні властивості
Ковалентний радіус128 пм
Радіус іона(+7e) 53 (+4e) 72 пм
Електронегативність (за Полінгом)1,9
Електродний потенціалRe←Re3+ -0,30В
Ступені окиснення5, 4, 3, 2, -1
Термодинамічні властивості
Густина21,02 г/см³
Молярна теплоємність0,138 Дж/(К·моль)
Теплопровідність48,0 Вт/(м·К)
Температура плавлення3453 К
Теплота плавлення34 кДж/моль
Температура кипіння5900 К
Теплота випаровування704 кДж/моль
Молярний об'єм8,85 см³/моль
Кристалічна ґратка
Структура ґраткигексагональна
Період ґратки2,760 Å
Відношення с/а1,615
Температура Дебая416,00 К
Інші властовості
Критична точкан/д
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
CMNS: Реній у Вікісховищі

Реній (англ. rhenium, нім. Rhenium n) — хімічний елемент. Від назви р. Рейну. Символ Re, атомний номер 75; атомна маса 186,207. У природі існує два ізотопи: стабільний 185Re і радіоактивний 187Re. Елемент передбачений Д.Менделєєвим в 1869 р., виявлений в 1925 р. німецькими геохіміками І. та В. Ноддак в колумбіті і ґадолініті. У 1926 р. реній був виділений ними в чистому вигляді, а в 1928 р. вони встановили, що найвищий вміст його характерний для молібденіту і що реній є геохімічним аналогом молібдену.

Загальна характеристика

[ред. | ред. код]

Сріблясто-білий тугоплавкий метал. Хімічно дуже стійкий. Густина 21030 кг/м³; tплав 3190 °C; tкип 5600 °C. Реній вирізняється високим електричним опором і твердістю, пластичністю, легко утворює сплави з Мо, Pt, Os, Co, V, W, Ta, Nb і за багатьма властивостями близький до платини. Халькофільний. Парамагнітний. Реній — рідкісний розсіяний елемент. Середній вміст ренію в земній корі 7•10−8% мас.

Реній вирізняється високою міграційною здатністю і в окиснювальному середовищі легко виноситься. Найбільш збагачені ним молоді фанерозойські родовища. Нагромаджується також в осадових утвореннях мідистих сланців (Мансфельд, Німеччина) і мідистих пісковиках (Джезказган, Казахстан), при цьому ренійвмісні руди локалізуються в крайових частинах депресій.

Реній, як типовий розсіяний елемент, концентрується в плутоногенних гідротермальних мідно-молібденових родовищах, а також в осадових мідистих пісковиках і мідистих сланцях, звідки він попутно добувається при комплексній переробці руд.

Історія

[ред. | ред. код]

Реній (лат. Rhenus що означає Рейн)[1] був останнім із хімічних елементів, що мають стабільні ізотопи, якій був відкритий у природі.[2] Існування ще не відкритого елементу було передбачено Д. І. Менделеєвим на основі переодичної системи елементів. Інша теоретична інформація була отримана Генрі Мозлі у 1914.[3] Але він був остаточно відкритий Вальтером Ноддаком, Ідою Таке, та Отто Бергом у Німеччині. В 1925 році вони повідомили про визначення елементу в платиновій руді та мінералі колумбіт. Також вони знайшли реній у гадолініті та молібденіті.[4] У 1928-му вони змогли віділити 1 г цього елементу переробивши 660 кг молібденіту.[5] Процес був настільки складний, що видобуток ренію був призупинений до 1950 р. коли було налагоджено виробництво вольфрам-ренієвого та молібден-ренієвого сплаву. Ці сплави знайшли широке застосування в промисловості, що обумовило великий попит на реній, добутий з мідної руди.

У 1908 японський хімік Масатака Огава заявив, що він відкрив елемент номер 43 Nipponium (Np) на честь Японії. Однак, надалі аналіз показав наявність ренію в його зразках (елемент номер 75), а не елемента 43 технецію.[6] Символ Np надалі був використаний для елемента Нептуній.

Походження назви

[ред. | ред. код]

Названий на честь батьківщини Іди Ноддак-Таке (Ida Noddack-Tacke) — Рейнської провінції Німеччини, лат. Rhenus — Рейн.

Отримання

[ред. | ред. код]
Ammonium perrhenate

Основне джерело отримання ренію — молібденові концентрати (вміст ренію 0,01–0,04%). Виробництво ренію базується на відходах, що отримують при переробці молібденових, мідно-молібденових і мідних концентратів. При випаленні цих концентратів реній окислюється до Re2O7 і випаровується з пилом, який вловлюється на фільтрах випалювальних печей. Пил містить 0,01–0,2% Re при початковій його кількості в концентраті 0,005–0,05%.

Оксид ренію переводять аміачною водою в перренат амонію:

який при високі температурі і тоці водню відновлюється до металу:

Великими вважаються родовища із запасами понад 30–40 т Re, дрібні — близько 3–5 т. У присутності молібдену реній не може утворювати власних мінералів і розсіюється в молібденіті, накопичуючись в різних низькотемпературних типах руд і в останніх їх генераціях. Тому, якщо в кварц-вольфрамітових і кварц-молібденітових родовищах в молібденіті міститься 0,001–0,003% Re, то в молібденіті більш низькотемпературних родовищ кількість його на порядок вища. Середнє співвідношення Мо:Re = 5000. Крім молібденіту, для якого мінеральний кларк 114 г/т, реній входить до складу халькопіриту (0,6 г/т) і піриту (0,3 г/т). У пентландит-халькопірит-піротинових рудах реній виявляє деяку схожість з елементами платинової групи, накопичуючись спільно з осмієм і іридієм в піротині. У мідно-колчеданових родовищах він концентрується в халькопіриті й піриті і, хоч вміст його тут і низький, загальні запаси значні. При метаморфізмі колчеданових руд він, як правило, виноситься. Найбільш високий вміст ренію характерний для мідно-молібденових родовищ (в молібденіті 400–900 г/т). Максимальний вміст (18800 г/т) пов'язаний з ромбоедричною β-модифікацією молібденіту. У цих родовищах спостерігається пряма кореляція між вмістами в молібденіті ренію і селену.

Застосування

[ред. | ред. код]

Застосовують реній у наджаротривких сплавах, вакуумній техніці, як каталізатор тощо. Унікальна роль ренію в каталітичних процесах, зокрема при крекінгу нафти.

Ізотопи

[ред. | ред. код]

Природний реній має стабільний ізотоп реній-185, що, тим не й менше у природі зустрічається у менших кількостях ніж радіоактивний природний ізотоп. Така ситуація повторюється лише з одним іншим елементом — індієм. Природний реній містить 37,4% 185Re, що є стабільним, та 62,6% 187Re, що є радіоактивним, та має дуже великий період напіврозпаду (~1010 років). Така ситуація обумовлена внутрішнім станом атому ренію.[7][8] Явище бета-розпад ізотопу 187Re використовується для ренієво-осмієвого аналізу копалин. Вільна енергія цього бета-розпаду (2,6 кеВ) є однією з найнижчих з усіх відомих радіонуклідів. Також відомо 26 інших ізотопів ренію.[9]

Біологічна роль

[ред. | ред. код]

Реній не бере участі в біохімічних процесах та не відіграє біологічної ролі.[10]

Див. також

[ред. | ред. код]

Примітки

[ред. | ред. код]
  1. Tilgner, Hans Georg (2000). Forschen Suche und Sucht (German) . Books on Demand. ISBN 9783898112727.
  2. Rhenium: Statistics and Information. Minerals Information. United States Geological Survey. 2008. Архів оригіналу за 23 червня 2013. Процитовано 3 лютого 2008.
  3. Moseley, Henry (1914). High Frequency Spectra of the Elements, Part II. Philosophical Magazine: 703—713. Архів оригіналу за 22 січня 2010. Процитовано 4 березня 2011.
  4. Noddack, W.; Tacke, I.; Berg, O. (1925). Die Ekamangane. Naturwissenschaften. 13 (26): 567—574. doi:10.1007/BF01558746.
  5. Noddack, W.; Noddack, I. (1929). Die Herstellung von einem Gram Rhenium. Zeitschrift für anorganische und allgemeine Chemie (German) . 183 (1): 353—375. doi:10.1002/zaac.19291830126.
  6. Yoshihara, H. K. (2004). Discovery of a new element ‘nipponiumʼ: re-evaluation of pioneering works of Masataka Ogawa and his son Eijiro Ogawa. Spectrochimica Acta Part B Atomic Spectroscopy. 59: 1305—1310. doi:10.1016/j.sab.2003.12.027.
  7. Johnson, Bill (1993). How to Change Nuclear Decay Rates. Архів оригіналу за 23 червня 2013. Процитовано 21 лютого 2009.
  8. Bosch; Faestermann, T; Friese, J; Heine, F; Kienle, P; Wefers, E; Zeitelhack, K; Beckert, K; Franzke, B (1996). Observation of bound-state β– decay of fully ionized 187Re:187Re-187Os Cosmochronometry. Physical Review Letters. 77 (26): 5190—5193. doi:10.1103/PhysRevLett.77.5190. PMID 10062738.
  9. Georges, Audi (2003). The NUBASE Evaluation of Nuclear and Decay Properties. Nuclear Physics A. Atomic Mass Data Center. 729: 3—128. doi:10.1016/j.nuclphysa.2003.11.001.
  10. WebElements Periodic Table » Rhenium » biological information. www.webelements.com. Процитовано 16 березня 2023.

Література

[ред. | ред. код]


{{bottomLinkPreText}} {{bottomLinkText}}
Реній
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?