For faster navigation, this Iframe is preloading the Wikiwand page for R대칭.

R대칭

이론물리학에서 R대칭(R對稱, 영어: R-symmetry)은 서로 다른 초대칭 생성원(초전하)들을 섞는 (보손) 대칭이다. 가장 간단한 () 초대칭에서는 U(1)이지만, 확장 초대칭의 경우 아벨 군이 아닐 수 있다.

정의

[편집]

시공간 대칭 이 주어졌다고 하자. 예를 들어, 부호수 민코프스키 공간에서, 이는 푸앵카레 대칭 이며, 반 더 시터르 공간이나 등각 장론에서는 이는 의 꼴이다.

이 위에 초대칭 이론을 정의한다고 하자. 그렇다면, 초대칭리 초대수 의 보손 성분 를 생각하자. 콜먼-맨듈라 정리하크-워푸샨스키-조니우스 정리 등에 따라서, 이는 일반적으로

의 꼴이다. 즉, 시공간 대칭과 가환하는 대칭의 리 대수 가 존재한다. 이 리 대수에 대응하는 대칭을 R대칭이라고 한다.

스피너 표현이 실수 또는 복소수 또는 사원수 표현인지 여부에 따라서, R대칭군은 각각 직교군 또는 유니터리 군 또는 심플렉틱 군이 된다. 구체적으로, 시공간 부호수 에서, 초대칭의 R대칭은 다음과 같다.

스피너 종류 R대칭
0 마요라나-바일
±1 마요라나
±2 마요라나, 바일
±3 디랙
4 (심플렉틱-마요라나) 바일

물론, 이 가운데 일부는 상호 작용에 의하여 깨지거나 게이지 대칭이 될 수 있다.

성질

[편집]

일반적인 초대칭 양자장론에서, R대칭은 (이름과 달리) 실제 이론의 대칭이 아닐 수 있다. 즉, 해밀토니언 연산자와 가환하지 않을 수 있다. 이 깨짐은 직접적으로 (R대칭을 따르지 않는 라그랑지언 항), 또는 변칙적으로 일어날 수 있다. 그러나 등각 장론의 경우, 등각 대수가 닫히기 위해서 R대칭이 꼭 필요하며, 따라서 R대칭이 깨질 수 없다.

4차원에서, 중심 전하(영어: central charge)가 없는 초대칭 이론의 경우 R대칭은 이다 (일 경우, ). 만약 중심 전하 가 주어질 경우, R대칭은 중심 전하를 보존하는 부분군인 심플렉틱 군 으로 깨지게 된다.[1]:40

[편집]

민코프스키 공간 위의 초대칭 이론 (특히 양-밀스 이론)의 R대칭군은 다음과 같다.

시공간 차원 초대칭 수(𝒩) R대칭군 주석
(1,1) (2,2) U(1)A×U(1)V 물질에 따라서 U(1)A 또는 U(1)V 둘 다 변칙을 겪을 수 있음
(2,1) 4 SO(4) = SU(2)×SU(2)
(3,1) 1 U(1)
(3,1) 2 SU(2) U(1) 성분은 변칙적으로 로 깨짐, 게이지 군
(3,1) 4 SU(4)
(5,1) (1,0) USp(2) = SU(2)
(5,1) (1,1) USp(2)×USp(2) = SU(2)×SU(2)
(5,1) (2,0) USp(4) = Spin(5)[2]

이들 가운데 일부는 다음과 같이 기하학적으로 해석할 수 있다.

  • 4차원 양-밀스 이론SU(4)=Spin(6) R대칭군은 AdS/CFT 대응성을 통해, 반 더 시터르 공간의 등거리군으로 설명할 수 있다. 또한, 4차원 는 10차원 양-밀스 이론에서 6개의 차원을 축소화하여 얻으며, 이에 따라 Spin(6)=SU(4)를 얻는다.
  • 6차원 이론의 경우, 10차원 양-밀스 이론에서 4개의 차원을 축소화하여 얻을 수 있다. 이에 따라 R대칭군은 Spin(4)=USp(2)×USp(2)이다.
  • 6차원 이론의 경우, M5-막 위에 존재한다. 따라서, 11차원 M이론을 사용하여, M5-막에 수직인 5개의 차원으로부터 R대칭 Spin(5)=USp(4)를 얻는다.
  • 3차원 이론은 6차원 이론에서 세 개의 차원을 축소화하여 얻을 수 있다. 이 경우, 6차원 이론은 USp(2) R대칭을 가지며, 축소화한 3개의 차원으로부터 Spin(3)=SU(2) R대칭이 추가로 발생한다. 따라서 총 R대칭은 Spin(4)=SU(2)×SU(2)이다.

등각 대칭 / (반) 더 시터르

[편집]

실수 단순 리 초대수 가운데, 그 보손 부분 대수가

[콤팩트 리 대수]

의 꼴인 것들은 다음이 있다.

리 대수 시공간 부호수 R대칭 리 대수 시공간 부호수 R대칭
(4,2) (4,2)
(6,0) (6,0)
(3,0) (3,0)
(2,1) (2,1)
(3,2)
(2,1)
(2,1)
(2,1)
(3,0)
(2,1)

이들은 초등각 장론 또는 이에 대응하는 반 더 시터르 공간이나 더 시터르 공간 위의 초대칭 이론에서 사용된다.[3]

각주

[편집]
  1. Labastida, Jose; Mariño, Marcos. 《Topological quantum field theories and four manifolds》. Mathematical Physics Studies (영어) 25. Springer. doi:10.1007/1-4020-3177-7. ISBN 978-1-4020-3058-1. ISSN 0921-3767. 
  2. “보관된 사본” (PDF). 2016년 3월 4일에 원본 문서 (PDF)에서 보존된 문서. 2015년 5월 15일에 확인함. 
  3. Berkovits, N.; Bershadsky, M.; Hauer, T.; Zhukov, S.; Zwiebach, B. (2000). “Superstring theory on AdS2 × S2 as a coset supermanifold”. 《Nuclear Physics B》 (영어) 567: 61–86. arXiv:hep-th/9907200. 

같이 보기

[편집]
{{bottomLinkPreText}} {{bottomLinkText}}
R대칭
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?