For faster navigation, this Iframe is preloading the Wikiwand page for 矩陣乘法.

矩陣乘法

线性代数 A = [ 1 2 3 4 ] {\displaystyle \mathbf {A} ={\begin{bmatrix}1&2\\3&4\end{bmatrix))} 向量 · 向量空间 · 基底  · 行列式  · 矩阵 向量 标量 · 向量 · 向量空间 · 向量投影 · 外积向量积 · 七维向量积) · 内积数量积) · 二重向量 矩阵与行列式 矩阵 · 行列式 · 线性方程组 · · · · 單位矩陣 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反對稱矩陣 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展開 · 克罗内克积 线性空间与线性变换 线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · · 线性映射 · 线性投影 · 線性無關 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 .mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin:0;display:inline}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist dt:after{content:" :"}.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{content:" · ";font-weight:bold}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)"\a0 "}.mw-parser-output ul.cslist,.mw-parser-output ul.sslist{margin:0;padding:0;display:inline-block;list-style:none}.mw-parser-output .cslist li,.mw-parser-output .sslist li{margin:0;display:inline-block}.mw-parser-output .cslist li:after{content:","}.mw-parser-output .sslist li:after{content:";"}.mw-parser-output .cslist li:last-child:after,.mw-parser-output .sslist li:last-child:after{content:none}.mw-parser-output .navbar{display:inline;font-weight:normal;font-size:88%}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit;color:inherit!important}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}
「横向的一条线(row)」的各地常用名稱
中国大陸
臺灣
「纵向的一条线(column)」的各地常用名稱
中国大陸
臺灣

数学中,矩阵乘法(英語:matrix multiplication)是一种根据两个矩阵得到第三个矩阵的二元运算,第三个矩阵即前两者的乘积,称为矩阵积(英語:matrix product)。设的矩阵,的矩阵,则它们的矩阵积的矩阵。中每一行的个元素都与中对应列的个元素对应相乘,这些乘积的和就是中的一个元素。

矩阵可以用来表示线性映射,矩阵积则可以用来表示线性映射的复合。因此,矩阵乘法是线性代数的基础工具,不仅在数学中有大量应用,在应用数学物理学工程学等领域也有广泛使用。[1][2]

一般矩陣乘積

矩陣相乘最重要的方法是一般矩陣乘積。它只有在第一個矩陣的列数(column,台湾作行數)和第二個矩陣的行数(row,台湾作列數)相同時才有定義。一般單指矩陣乘積時,指的便是一般矩陣乘積。若矩陣,矩陣,則他們的乘積(有時記做)會是一個矩陣。其乘積矩陣的元素如下面式子得出:

以上是用矩陣單元的代數系統來說明這類乘法的抽象性質。本節以下各種運算法都是這個公式的不同角度理解,運算結果相等:

由定義直接計算

左邊的圖表示出要如何計算元素,當是個矩陣和B是個矩陣時。分別來自兩個矩陣的元素都依箭頭方向而兩兩配對,把每一對中的兩個元素相乘,再把這些乘積加總起來,最後得到的值即為箭頭相交位置的值。

向量方法

這種矩陣乘積亦可由稍微不同的觀點來思考:把向量和各係數相乘後相加起來。設是兩個給定如下的矩陣:

其中

是由所有元素所组成的向量(column),是由所有元素所组成的向量,以此类推。
是由所有元素所组成的向量(row),是由所有元素所组成的向量,以此类推。

舉個例子來說:

左面矩陣的列為為係數表,右邊矩陣為向量表。例如,第一行是[1 0 2],因此將1乘上第一個向量,0乘上第二個向量,2則乘上第三個向量。

向量表方法

一般矩陣乘積也可以想為是行向量列向量內積。若為給定如下的矩陣:

其中,这里

是由所有元素所組成的向量,是由所有元素所組成的向量,以此類推。
是由所有元素所組成的向量,是由所有元素所組成的向量,以此類推。

性質

矩陣乘法是不可交換的(即),除了一些較特別的情況。很清楚可以知道,不可能預期說在改變向量的部份後還能得到相同的結果,而且第一個矩陣的列數必須要和第二個矩陣的行數相同,也可以看出為什麼矩陣相乘的順序會影響其結果。

雖然矩陣乘法是不可交換的,但行列式總會是一樣的(當是同樣大小的方陣時)。其解釋在行列式條目內。

可以被解釋為線性算子,其矩陣乘積會對應為兩個線性算子的複合函數,其中B先作用。

在試算表中做矩陣乘法

以 Google Sheet 為例,選取儲存格範圍或者使用陣列,在儲存格輸入

=MMULT({1,0,2;-1,3,1},{3,1;2,1;1,0})

在某些試算表軟體中必須必須按Ctrl+⇧ Shift+↵ Enter 將儲存格內的變數轉換為陣列

純量乘積

矩陣和純量的純量乘積的矩陣大小和一樣,的各元素定義如下:

若我們考慮於一個的矩陣時,上述的乘積有時會稱做左乘積,而右乘積的則定義為

當環是可交換時,例如實數體或複數體,這兩個乘積是相同的。但無論如何,若環是不可交換的話,如四元數,他們可能會是不同的。例如,

阿達馬乘積

給定兩個相同維度的矩陣可計算有阿達馬乘積Hadamard product),或稱做逐項乘積分素乘積element-wise product, entrywise product)。兩個矩陣阿達馬乘積標記為,定義為 矩陣。例如,

需注意的是,阿達馬乘積是克羅內克乘積的子矩陣

克羅內克乘積

給定任兩個矩陣,可以得到兩個矩陣的直積,或稱為克羅內克乘積,其定義如下

是一矩陣和是一矩陣時,會是一矩陣,而且此一乘積也是不可交換的。

舉個例子,

分別表示兩個線性算子便為其映射的張量乘積

共同性質

上述三種乘積都符合結合律

以及分配律

而且和純量乘積相容:

注意上述三個分開的表示式只有在純量體的乘法及加法是可交換(即純量體為一可交換環)時會相同。

另見

外部連結

參考

  1. ^ Lerner, R. G.; Trigg, G. L. Encyclopaedia of Physics 2nd. VHC publishers. 1991. ISBN 3-527-26954-1 (英语). 
  2. ^ Parker, C. B. McGraw Hill Encyclopaedia of Physics 2nd. 1994. ISBN 0-07-051400-3 (英语). 

其它参考文献包括:

  • Strassen, Volker, Gaussian Elimination is not Optimal, Numer. Math. 13, p. 354-356, 1969.
  • Coppersmith, D., Winograd S., Matrix multiplication via arithmetic progressions, J. Symbolic Comput. 9, p. 251-280, 1990.
  • Horn, Roger; Johnson, Charles: "Topics in Matrix Analysis", Cambridge, 1994.
  • Robinson, Sara, Toward an Optimal Algorithm for Matrix Multiplication, SIAM News 38(9), November 2005.
{{bottomLinkPreText}} {{bottomLinkText}}
矩陣乘法
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?