For faster navigation, this Iframe is preloading the Wikiwand page for 布鲁克斯定理.

布鲁克斯定理

此條目包含過多行話或專業術語,可能需要簡化或提出進一步解釋。 (2021年12月16日)請在討論頁中發表對於本議題的看法,並移除或解釋本條目中的行話。

图论中,布鲁克定理(英語:Brooks' theorem[1] 描述了图的着色数与图中最大度数的关系,提供了图着色数的一个上界。定理斷言,若连通图G中,每個頂點都不多於Δ個鄰居,且G不是完全图奇环,则G可以被Δ-着色,即G可以被染成Δ种颜色,使得相邻点颜色互不相同。

背景

[编辑]

图染色数

[编辑]

考慮為的頂點染色,而使每邊的兩端不同色。以符號表示,條件是:对于图中任意两个顶点,如果,那么所染成的颜色不同。

对于图,如果存在一个种颜色的恰当染色方案,称可染色(或「可着色」)。在所有满足条件的中,称最小的那个稱為染色數

图最小染色数和图最大度数关系

[编辑]

的最大記作。对于任意图始终成立。但是这个上界并不足够紧。而布鲁克斯定理提供了一个更紧的上界。

图着色问题有一个贪心染色法greedy coloring[2],将颜色标号为,将图G的顶点排序为,按顺序对顶点进行染色。染時,其邻居至多有個,所以已染色的鄰居中,至多衹用了種色,尚有某種色未用,可选择該種色作为的着色。

根据布鲁克斯定理,不等式取等当且仅当G为完全图或奇环。当G为完全图时,,当G为奇环时,,均满足

定理敍述

[编辑]

如果是一个连通图,而且不是奇环或者完全图,那么。其中是图的最小着色数,是图中点的最大度数。

定理证明

[编辑]

此處给出洛瓦兹·拉兹洛[3]的一个证明(亦見諸[4])。

。当的时候,是完全图。当的时候,由于不是奇环,那么要么是一条路径,或者偶环。此时。所以,衹需从开始考虑。分下列三種情況:

G不是k正则图

[编辑]

选择G中度小于k的点最后染色。由於連通,有某種排序方式使得除之外,每个节点都有一个邻点排在它的后面:例如从出发对图G进行深度优先遍历,按照DFS序的逆序排列G的节点。故只有小于等于k - 1个邻点排在它前面,这样,只有小于等于k - 1个邻点排在它前面,而,故也只有小于等于k - 1个邻点排在它前面,按該次序的貪心染色最多衹用k種色。

若要避免術語「DFS」,可以构造下列集合直到里面包含中所有顶点:

然后可以用上述贪心染色算法对图进行染色。染色顺序为:先染中的点,再染中的点,一直这么下去直到染完中的点。这种算法使用种颜色就能完成。当染到点時,中至少有一个邻居,所以邻居中至多只有个被染色过,所以能对进行染色。

当染点的时候,由于邻居中至多只有个被染色过,所以同样能对进行染色。所以用种颜色对恰当染色。

Gk正则图但有割点

[编辑]

假设割点为,那么就不是连通图,设連通分量。对于任意一个连通分支,考虑。由于的度數小於。由前述贪心染色算法可知,可染色。然后只需令这些染色方案中所染的颜色一样(如果不一样,将所有点染的颜色重新排列一下),就能拼成的染色方案,所以可用种颜色对恰当染色。

Gk正则图且無割点

[编辑]

由于中没有割点,2连通图英语Biconnected graph。斷言可以找到一个顶点,使得它有两个邻点,满足不相邻,且连通。如果这样的存在,就可以先將染成同色,然後貪心地為其他點染色,使最後染。这样貪心染法衹用不超過種色,因为除之外的点,只有小于等于个邻点排在它前面,而又有兩個邻点同色,故的鄰域衹用前種色,尚有餘下顏色可用。以下說明為何有此種

如果是3连通的,則可以選取距離為2的兩點(因為不是完全圖),及其公共鄰點。如此有,又由于是3连通的,是连通图,即為所求。

僅剩是2连通但不是3连通的情況。此時有頂點使僅為1連通,考慮各個雙連通分支英语biconnected component,之間以割點連接,組成一棵樹。因為不是2連通,該樹至少有兩個叶区块(leaf block),設為。又因为无割点,所以的每一个叶区块中,必有某個非割點與相邻。於是,可以在中各取的鄰點,使不是的割点。如此,不相邻(否則屬同一雙連通分支),且连通。因为,所以连通。證畢。

参考文献

[编辑]
  1. ^ Brooks, R. L., On colouring the nodes of a network, Mathematical Proceedings of the Cambridge Philosophical Society英语Mathematical Proceedings of the Cambridge Philosophical Society, 1941, 37 (2): 194–197, doi:10.1017/S030500410002168X 
  2. ^ Mitchem, John, On various algorithms for estimating the chromatic number of a graph, The Computer Journal英语The Computer Journal, 1976, 19 (2): 182–183, MR 0437376, doi:10.1093/comjnl/19.2.182 
  3. ^ Lovász, L., Three short proofs in graph theory, Journal of Combinatorial Theory英语Journal of Combinatorial Theory, Series B, 1975, 19 (3): 269–271, doi:10.1016/0095-8956(75)90089-1 
  4. ^ Douglas B.West. Introduction to Graph Theory. Pearson Enducation. 2002. ISBN 81-7808-830-4. 
{{bottomLinkPreText}} {{bottomLinkText}}
布鲁克斯定理
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?