For faster navigation, this Iframe is preloading the Wikiwand page for 摩尔-彭若斯广义逆.

摩尔-彭若斯广义逆

摩尔-彭若斯广义逆(英语:Moore–Penrose pseudoinverse),通常标记为,是著名的广义逆矩阵之一。

1903年,埃里克伊姆(Erik Ivar Fredholm)提出积分算子的伪逆的概念。摩尔-彭若斯广义逆先后被以利亚金·黑斯廷斯·摩尔(Eliakim Hastings Moore)(1920年)[1]、阿恩·布耶哈马(Arne Bjerhammar)(1951年) [2]罗杰·彭罗斯(1955年)[3]发现或描述。

它常被用于求得或简化非一致线性方程组的最小范数最小二乘解(最小二乘法)。

矩阵的摩尔-彭若斯广义逆在实数域和复数域上都是唯一的,并且可以通过奇异值分解求得。

定义

定义一

PS表示到向量空间S上的正交投影。对于任意一个m乘n的复矩阵A,设R(A)表示A的值域空间。摩尔于1935年证明矩阵A的广义逆矩阵G必须满足的条件:

以上两个条件称为摩尔条件。满足摩尔条件的矩阵G称为矩阵A的摩尔逆矩阵。


定义二

彭若斯于1955年提出了定义广义逆矩阵的另外一组条件[3]

  1. 不一定是单位矩阵,但却不会改变的列向量。
  2. 是乘法半群的弱逆
  3. 埃尔米特矩阵
  4. 也是埃尔米特矩阵

以上四个条件常称摩尔-彭若斯条件。满足全部四个条件的矩阵G,就称为A的摩尔-彭若斯广义逆矩阵。

性质

从摩尔-彭若斯条件出发,彭若斯推导出了摩尔-彭若斯广义逆的一些性质[3]

  • 都是幂等矩阵。

存在性和唯一性

伪逆存在且唯一:对于任何矩阵,恰好有一个矩阵满足定义的四个性质。[4]

满足该定义的第一个条件的矩阵被称为广义逆。如果该矩阵也满足第二个定义,它就被称为广义反身逆阵(generalized reflexive inverse)。广义逆矩阵总存在,但一般不唯一。唯一性是最后两个条件的结果。

基本性质

这些性质的证明可以在维基教科书中找到。

  • 如果 有实数项,那么 也有。
  • 如果 是可逆的,它的伪逆就是它的逆矩阵,即: .[5]:243
  • 零矩阵的伪逆是它的转置。
  • 矩阵伪逆的伪逆是原矩阵,即: .[5]:245
  • 伪转置与转置、复共轭和共轭转置可以交换:[5]:245
    , , .
  • 矩阵 的标量乘法的伪逆是 的标量的倒数的乘法:
    对于 .

恒等式

下面的恒等式可以用来判定部分涉及伪逆的子表达式的正确性:同样的,将 替换为 会得到:当用 替代 时,会得到:

埃尔米特情况

伪逆的计算可以简化为其在埃尔米特情况下的构造,这可以通过等价关系实现:其中 是埃尔米特矩阵。

乘积

,下列等式等价:[6]

下方列出了 的充分条件:

  1. 的列单位正交(此时),或
  2. 的行单位正交 (此时 ) ,或
  3. 的列线性无关(此时 ) 同时 的行线性无关(此时 ),或
  4. ,或

下方列出了 的必要条件:

由最后一个充分条件得出等式:注意: 等式 一般不成立,例如:

投影

是正交投影算子,即它们是埃尔米特矩阵()和幂等矩阵()。以下性质成立:

  • 是正交投影算子,投影到 的值域(也就是 的正交补空间)。
  • 是正交投影算子,投影到 的值域(也就是 的核的正交补空间)。
  • 是正交投影算子,投影到 的核。
  • 是正交投影算子,投影到 的核。[4]

最后两条性质隐含了下列等式:

如果 是埃尔米特矩阵和幂等矩阵(当且仅当它为正交投影矩阵),则对于任意矩阵 ,下式成立:[7]这一条性质可以如此证明:定义矩阵 , ,当 是埃尔米特矩阵和幂等矩阵时,通过验证伪逆的性质可以检查 确实是 的一个伪逆。从上一条性质可以看出,当 是埃尔米特矩阵和幂等矩阵时,对于任意矩阵

是一个正交投影矩阵,则它的伪逆就是它自身,即


几何结构

如果我们把矩阵看作是一个在数域 上的线性映射 , 那么 可以被分解如下。首先定义符号: 表示直和, 表示正交补, 表示映射的核, 表示映射的像。注意 。 限制条件 则是一个同构。这意味着 上时这个同构的逆,在 上则是零。

换而言之,对于给定的 要找到 ,首先将 正交投影在 的值域中,找到点 ,然后构建 ,即就是在 中,会被 投影到 的点。这是 的一个平行于 的核的仿射子空间。这个子空间中长度最小的元素(也就是最靠近原点的元素),就是我们寻找的 的解。它可以通过从 中选择任意元素,并将其投影在 的核的正交补空间而得到。

以上描述与线性系统的最小范数解密切相关。


子空间

极限

伪逆可以由极限定义:(参见吉洪诺夫正则化)。当 不存在时,这些极限仍然存在。[4]:263

连续性

与一般的矩阵求逆不同,求伪逆的过程并不连续:如果序列 收敛到矩阵 (在最大范数或弗罗贝尼乌斯范数意义下),则 不一定收敛于 . 然而,如果所有的矩阵 有相同的秩,则 将收敛于 .[8]

导数关系

实值伪逆矩阵的导数,该矩阵在某点处具有恒定的秩 可以用原矩阵的导数来计算:[9]

例子

对于可逆矩阵,其广义逆为其一般的逆矩阵,所以以下仅举一些不可逆矩阵的例子。

  • 对于,其广义逆矩阵为(通常零矩阵的广义逆矩阵为其转置)。该广义逆矩阵的唯一性可以认为时由性质得出的,因为与零矩阵相乘总会得到零矩阵。
  • 对于,其广义逆矩阵为
    • 事实上,,所以
    • 类似的, ,由此
  • 对于,其广义逆矩阵为
  • 对于,其广义逆矩阵为
  • 对于,其广义逆矩阵为
  • 对于,其广义逆矩阵为 。对于该矩阵,其左逆存在且等于,事实上,

参考

书籍

  • 张贤达. 矩阵分析与应用. 北京: 清华大学出版社. 2004年9月: 85–99. ISBN 7-302-09271-0 (中文). 

文献

  1. ^ Moore, E. H. On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical Society. 1920, 26 (9): 394–395 [2012-12-01]. doi:10.1090/S0002-9904-1920-03322-7. (原始内容存档于2020-08-13). 
  2. ^ Bjerhammar, Arne. Application of calculus of matrices to method of least squares; with special references to geodetic calculations. Trans. Roy. Inst. Tech. Stockholm. 1951, 49. 
  3. ^ 3.0 3.1 3.2 Penrose, Roger. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society. 1955, 51: 406–413. doi:10.1017/S0305004100030401. 
  4. ^ 4.0 4.1 4.2 Golub, Gene H.; Charles F. Van Loan. Matrix computations有限度免费查阅,超限则需付费订阅 3rd. Baltimore: Johns Hopkins. 1996: 257–258. ISBN 978-0-8018-5414-9. 
  5. ^ 5.0 5.1 5.2 Stoer, Josef; Bulirsch, Roland. Introduction to Numerical Analysis 3rd. Berlin, New York: Springer-Verlag. 2002. ISBN 978-0-387-95452-3. .
  6. ^ Greville, T. N. E. Note on the Generalized Inverse of a Matrix Product. SIAM Review. 1966-10-01, 8 (4): 518–521 [2022-05-10]. ISSN 0036-1445. doi:10.1137/1008107. (原始内容存档于2022-06-17). 
  7. ^ Maciejewski, Anthony A.; Klein, Charles A. Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments. International Journal of Robotics Research. 1985, 4 (3): 109–117. S2CID 17660144. doi:10.1177/027836498500400308. hdl:10217/536可免费查阅. 
  8. ^ Rakočević, Vladimir. On continuity of the Moore–Penrose and Drazin inverses (PDF). Matematički Vesnik. 1997, 49: 163–72 [2022-05-10]. (原始内容 (PDF)存档于2022-04-03). 
  9. ^ Golub, G. H.; Pereyra, V. The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate. SIAM Journal on Numerical Analysis. April 1973, 10 (2): 413–32. Bibcode:1973SJNA...10..413G. JSTOR 2156365. doi:10.1137/0710036. 
{{bottomLinkPreText}} {{bottomLinkText}}
摩尔-彭若斯广义逆
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?