For faster navigation, this Iframe is preloading the Wikiwand page for Хромофор.

Хромофор

Матеріал з Вікіпедії — вільної енциклопедії.

Одна з конформацій молекули хлорофілу. Хромофор — порфіринове кільце з іоном магнію

Хромофо́р (від дав.-гр. χρωμα, «хрома» — колір, фарба та дав.-гр. φορος — носій) — структурна одиниця молекули, яка відповідає за її оптичні властивості, поглинання й випромінювання світла. Хромофор відповідає за колір речовини, звідки й походить його назва. Наприклад, зелене забарвлення хлорофілу зумовленне існуванням в ньому металоорганічного комплексу порфірину з іоном магнію, червоне забарвлення гемоглобіну — порфірину з іоном заліза.

Майже всі хромофори відносяться до одного з двох класів:

  1. фрагменти органічних молекул з подвійними зв'язками (в тому числі системами спряжених подвійних зв'язків) та/або гетероатомами;
  2. комплекси з йонами перехідних металів.

Історія

[ред. | ред. код]

Термін «хромофор» був запропонований в сімдесяті роки XIX століття німецьким хіміком О. Н. Віттом. Існують також певні групи, які самі по собі не є хромофорами, але посилюють здатність хромофорів поглинати світло та взагалі модифікують спектр поглинання (в першу чергу, зсувають його максимум). Такі групи в теорії Вітта називаються ауксохромами. Приклади ауксохромних груп: -OH, -SO3H, -NH2, -COOH, -CH3, -Cl, -Br.

Пізніше ця теорія поступилася місцем квантовомеханічній, але не відійшла цілковито в область історії науки: її основні поняття досить корисні для розуміння теорії електронних спектрів і сьогодні.

Механізм

[ред. | ред. код]

Паралель між дещо застарілою, але наочною моделлю та строгішим квантовохімічним розглядом, можна простежити на наступних прикладах. Кожен хромофор має в електронному спектрі свою смугу поглинання. Їй відповідає певний перехід електрона з одного енергетичного рівня на інший (а кожному такому рівневі — певна молекулярна орбіталь):

Типові хромофори
Хромофорна група Перехід λmax,
нм
εmax,
л·моль−1·см−1 !
C=C 180 10000
C=O 270 15÷30
  190 1000
N=N 340 5
  150 5
C=S 520 5
C=C-C=C 220 20000
C=C-C=O 320 100
N=O 660 10
Бензольне кільце 260 200

Згідно з теорією молекулярних орбіталей (МО), при утворенні молекулярних орбіталей з атомних енергетичні рівні останніх розщеплюються: одна МО в результаті має нижчу енергію порівняно з енергією окремих, розділених атомів, натомість друга — вищу. Електрони займають енергетично вигіднішу позицію: на нижчій МО, яка тому й називається зв'язувальною, бо саме знаходженням електронів на ній створюється хімічний зв'язок. Вища за енергією орбіталь, навпаки, начебто розштовхує атоми; її зазвичай позначають зірочкою і називають розпушувальною.

Так звані сигма-орбіталі утворюються об'єднанням електронних хмар вздовж лінії, що з'єднує два атоми. Пі-орбіталі мають складнішу структуру: об'єднання відбувається по обидва боки від цієї лінії. В органічних молекулах з гетероатомами (кажучи дещо спрощено, це будь-які атоми, відмінні від вуглецю та водню), крім зв'язувальних та розпушувальних сигма- та пі-орбіталей існують ще так звані незв'язувальні: неподілена електронна пара, що наявна в таких атомів, майже не бере участі в хімічному зв'язку, хоча значно впливає на спектр. Незв'язувальні орбіталі позначаються латинською літерою n. Поглинання кванта світла молекулою призводить до переходу одного з електронів з нижчого енергетичного рівня на вищий, незайнятий. Спрощену умовну схему енергетичних рівнів, що відповідають різним молекулярним орбіталям та переходам між ними, подано на малюнку.

Класифікація електронних переходів у органічних молекулах
Класифікація електронних переходів у органічних молекулах

З цієї схеми випливає, що переходам різних типів відповідає вельми різна енергія збудження. Найбільшими за енергією є -переходи. Спектральні смуги, що відповідають цим переходам, мають усі молекули, але ці смуги малоспецифічні (тобто приблизно однакові для всіх, а тому несуть надто мало інформації). До того ж, вони відповідають далекому (вакуумному) ультрафіолету ( нм), що створює великі технічні складнощі (на цих довжинах хвиль поглинає й повітря, чому треба працювати у вакуумі; дослідження потребують спеціальної оптики, наприклад, із сапфіру тощо).

Наявність у молекулі гетероатому дає можливість спостерігати переходи зі стану n (це електрони, які не беруть участі в формуванні хімічних зв'язків, в першу чергу електрони електронних пар, які тісно зв'язані зі своїми атомами, і якими атоми не діляться зі своїми сусідами). Ці переходи потребують меншої енергії (спостерігаються на більших довжинах хвиль). Якщо порівняти спектральні властивості вуглеводнів та їхніх заміщених похідних, як-от CH3CH2NH2, CH3NH2, CH3OH, CH3SH, CH3I тощо, то виявиться, що сполуки без гетероатомів поглинають світло зі значно меншою довжиною хвилі. Так, метан поглинає при  нм, а йодометан — при  нм. Це — прояв -переходу.

За наявності подвійних (взагалі кратних) зв'язків, особливо ж спряжених -систем, можливі переходи з участю -орбіталей. Групи, що відповідальні за - та -переходи, якраз і є хромофорами. Зазвичай енергія -переходу менша, ніж , але коли спряження в системі значне, енергетичний рівень найвищої зайнятої -орбіталі може стати вищим від рівня n-орбіталі, й -перехід потребуватиме меншої енергії (або більшої довжини хвилі), ніж . Взагалі -переходам властиве менше значення : < 100 порівняно з для . Підвищення полярності розчинника або введення електронодонорних замісників зсуває переходи в червоний бік (довші хвилі), а  — в синій (коротші хвилі). При цьому збільшується коефіцієнт поглинання для -переходів. Ще більший червоний зсув спостерігається при іонізації молекул, бо значно збільшується рухомість електронної оболонки завдяки появі електрона, що не бере участі в ковалентному зв'язку. Ось чому типові фарбники — це іонізовані молекули з розвиненою системою спряження, багаті на ауксохромні групи. Як приклад можна навести фарбник родамін B:

Родамін B
Родамін B

Джерела

[ред. | ред. код]
  • К. Хигаси, Х. Баба, А Рембаум. Квантовая органическая химия. — Москва : Мир. — С. 191—196. (рос.)
  • Н. Дж. Турро. Молекулярная фотохимия. — Москва : Мир. — С. 55—58. (рос.)
  • Ю. И. Наберухин. Лекции по молекулярной спектроскопии. — Новосибирск : НГУ. — С. 206—209. (рос.)
{{bottomLinkPreText}} {{bottomLinkText}}
Хромофор
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?