For faster navigation, this Iframe is preloading the Wikiwand page for ระบบจ่ายไฟฟ้าแก่ทางรถไฟ.

ระบบจ่ายไฟฟ้าแก่ทางรถไฟ

ลิงก์ข้ามภาษาในบทความนี้ มีไว้ให้ผู้อ่านและผู้ร่วมแก้ไขบทความศึกษาเพิ่มเติมโดยสะดวก เนื่องจากวิกิพีเดียภาษาไทยยังไม่มีบทความดังกล่าว กระนั้น ควรรีบสร้างเป็นบทความโดยเร็วที่สุด
บทความนี้อาจต้องการตรวจสอบต้นฉบับ ในด้านไวยากรณ์ รูปแบบการเขียน การเรียบเรียง คุณภาพ หรือการสะกด คุณสามารถช่วยพัฒนาบทความได้
หัวรถจักรไฟฟ้าในสวีเดนที่ใช้กระแสไฟฟ้าจากสายไฟระบบเหนือหัว

ระบบจ่ายไฟฟ้าให้รถไฟ หรือ (อังกฤษ: Railway Electrification System) เป็นระบบการจ่ายพลังงานไฟฟ้าให้กับรถไฟหรือรถราง เพื่อให้สามารถทำงานได้โดยไม่ต้องมีเครื่องกำเนิดไฟฟ้าบนขบวนรถ การจ่ายกระแสไฟฟ้ามีข้อดีเหนือกว่าระบบให้พลังงานอื่น ๆ ในการขับเคลื่อนหัวรถจักร แต่ต้องใช้เงินลงทุนอย่างมากพอสมควรสำหรับการติดตั้ง ในบทความนี้ คำว่า "ระบบ" หมายถึงการกำหนดค่าทางเทคนิคและรายละเอียดทางเทคนิคที่ถูกพัฒนาขึ้น ส่วนคำว่า "เครือข่าย" หมายถึงขอบเขตปริมณฑลของระบบที่มีการติดตั้งในพื้นที่ใช้งาน

ลักษณะของการใช้พลังงานไฟฟ้าของรถไฟ

[แก้]

การใช้ไฟฟ้าเพื่อเป็นพลังงานในการขับเคลื่อนรถไฟ ซึ่งอาจใช้หัวรถจักรไฟฟ้าเพื่อการขับเคลื่อนตู้ผู้โดยสาร หรือตู้สัมภาระ หรือเป็นรถไฟที่ประกอบด้วยตู้ที่มีเครื่องยนต์ไฟฟ้าหลายตู้ ซึ่งแต่ละตู้โดยสารรับกระแสไฟฟ้าเพื่อขับเคลื่อนด้วยตัวเองโดยไม่ต้องพึ่งหัวรถจักร พลังงานจะถูกสร้างขึ้นในโรงไฟฟ้าขนาดใหญ่ หลังจากนั้นพลังงานไฟฟ้าจะถูกส่งขึ้นไปยังสายส่งไฟฟ้าแรงสูง แล้วกระจายภายในเครือข่ายทางรถไฟไปให้รถไฟตามที่ต่างๆ โดยปกติจะมีระบบภายในในการจำหน่ายการใช้พลังงาน และการปรับระดับของแรงดันไฟฟ้าจะสร้างและติดตั้งโดยผู้ดูแลโครงการรถไฟโครงการนั้นๆเองเอง

พลังงานจะถูกถ่ายโอนไปยังรถไฟที่กำลังเคลื่อนที่โดยผ่านขารับไฟฟ้าอย่างต่อเนื่องตลอดเวลาหรือเกือบตลอดเวลา ในกรณีที่ใช้ระบบการจ่ายเหนือศีรษะ(Overhead Catenary System : OCS ) มักจะเป็นลวดเปลือยแขวนลอยอยู่ในเสาเรียกว่าสายส่งเหนือศีรษะ ตัวรถไฟมีเสายึดติดตั้งอยู่บนหลังคาซึ่งรองรับแถบตัวนำยึดติดกับหน้าสัมผัสด้วยสปริงรวมทั้งหมดเรียกว่าแหนบรับไฟ ( Pantograph )รายละเอียดหาอ่านได้ใน ระบบจ่ายไฟฟ้าเหนือหัว

ส่วนรางที่สาม และ รางที่สี่ หาอ่านได้จากบทความตามลิงก์นี้

เมื่อเทียบกับระบบเครื่องยนต์ดีเซล การใช้พลังงานไฟฟ้าทำให้สามารถพลังงานได้อย่างมีประสิทธิภาพแม้จะยอมรับว่ามีการสูญเสียระหว่างสายส่งไฟฟ้า มันสามารถให้พลังการลากสูงกว่า ช่วยลดค่าใช้จ่ายในการบำรุงรักษา ควบคุมง่ายและยังหลีกเลี่ยงการปล่อยสารพิษในเขตเมืองอีกด้วย โดยเฉพาะในระบบรถไฟโครงการใหม่ๆ นั้นยังสามารถนำพลังจากระบบเบรก (อังกฤษ: en:regenerative braking) สามารถนำกลับมาใช้ในระบบได้อีก

ส่วนข้อเสียของการใช้ไฟฟ้าก็คือการที่ต้องใช้เงินลงทุนสูงในการสร้างระบบการส่งจ่ายพลังงาน การขยายขอบเขต พื้นที่ให้บริการไปในพื้นที่ที่มีผู้โดยสารน้อย และขาดความยืดหยุ่นในกรณีที่เกิดการหยุดชะงักในเส้นทาง ความแตกต่างกันของมาตรฐานต่างๆการจัดระบบไฟฟ้าในพื้นที่ติดกัน เช่น การเดินทางระหว่างรับ ระหว่างประเทศ หรือทวีป ทำให้ลำบากในการให้บริการได้อย่างต่อเนื่อง และเนื่องจากสายไฟฟ้าเหนือศีรษะอยู่ในระดับต่ำ ทำให้การเดินรถแบบสองชั้นทำได้ยาก

ระบบจ่ายไฟเหนือหัวไม่ได้เผื่อความสูงของสายไฟทำให้การขนส่งสองชั้นทำได้ยาก

การจัดหมวดหมู่

[แก้]
ระบบจ่ายไฟฟ้าในยุโรป:
  ไม่มีการจ่ายกระแสไฟฟ้า
  750 V DC
  1.5 kV DC
  3 kV DC
  15 kV AC
  25 kV AC
สายความเร็วสูงในประเทศฝรั่งเศส, สเปน, อิตาลี, สหราชอาณาจักร, เนเธอร์แลนด์, เบลเยียมและตุรกีดำเนินงานที่ 25 KV เท่ากับสายส่งกำลังไฟฟ้าในอดีตสหภาพโซเวียต


ระบบการใช้พลังงานไฟฟ้าถูกจำแนกเป็นสามปัจจัยหลักดังนี้:

  1. แรงดันไฟฟ้า
  2. กระแส
    • กระแสตรง (DC)
    • กระแสสลับ (AC)
      • ความถี่
  3. ระบบหน้าสัมผัส
    • รางที่สาม
    • เหนือศีรษะ

แรงดันไฟฟ้าที่ได้มาตรฐาน

[แก้]

แรงดันไฟฟ้าที่ใช้กันมากที่สุดมี 6 ระดับแรงดัน โดยได้รับการคัดเลือกสำหรับมาตรฐานยุโรปและต่างประเทศ แรงดันเหล่านี้เป็นอิสระจากระบบหน้าสัมผัสที่ใช้ ตัวอย่างเช่น 750 V DC อาจจะใช้กับรางที่สามหรือเหนือศีรษะ (รถรางปกติใช้เหนือศีรษะ)

มีหลายระบบแรงดันไฟฟ้าอื่น ๆ ที่ใช้สำหรับระบบรถไฟฟ้าทั่วโลกและ'รายการของระบบปัจจุบันสำหรับการลากรถไฟฟ้า' (อังกฤษ: en:list of current systems for electric rail traction) จะครอบคลุมทั้งแรงดันไฟฟ้าที่ได้มาตรฐานและไม่ได้มาตรฐาน

ช่วงของแรงดันไฟฟ้าที่ได้รับอนุญาตมีการระบุไว้ในมาตรฐาน BS EN 50163[1] และ IEC 60850[2]. มาตรฐานเหล่านี้ได้คำนึงถึงจำนวนของรถไฟที่ใช้กระแสและระยะทางจากสถานีย่อย

ระบบไฟฟ้า แรงดันต่ำสุดไม่ถาวร แรงดันต่ำสุดถาวร แรงดันใช้งาน แรงดันสูงสุดถาวร แรงดันสูงสุดไม่ถาวร
600 V ไฟฟ้ากระแสตรง 400 V 400 V 600 V 720 V 800 V
750 V DC 500 V 500 V 750 V 900 V 1,000 V
1,500 V DC 1,000 V 1,000 V 1,500 V 1,800 V 1,950 V
3 kV DC 2 kV 2 kV 3 kV 3.6 kV 3.9 kV
15 kV AC, 16.7 Hz 11 kV 12 kV 15 kV 17.25 kV 18 kV
25 kV AC, 50 Hz 17.5 kV 19 kV 25 kV 27.5 kV 29 kV

กระแสตรง

[แก้]

แรกเริ่มนั้นระบบจ่ายไฟฟ้าใช้แรงดันต่ำ มอเตอร์ไฟฟ้าบนรถไฟได้รับกระแสไฟฟ้ากระแสตรงจากแหล่งจ่ายสถานีไฟฟ้าขับเคลื่อน และถูกควบคุมโดยใช้ความต้านทาน เมื่อรถไฟเพิ่มความเร็วและใช้รีเลย์ที่เชื่อมต่อการทำงานของมอเตอร์แบบอนุกรมหรือแบบขนาน

สาย Tyne and Wear Metro เป็นรถไฟฟ้าสายเดียวในสหราชอาณาจักรที่ใช้ไฟ 1,500 V DC

แรงดันที่นิยมมากที่สุดเป็นแรงดันไฟฟ้ากระแสตรง 600 V และ 750 V สำหรับรถรางและรถไฟฟ้าใต้ดิน และ 1500 V 650/750 V สำหรับรางที่สาม สำหรับภาคใต้ในอดีตของสหราชอาณาจักร และ 3 กิโลโวลต์สำหรับระบบเหนือศีรษะ ไฟฟ้าแรงดันต่ำมักจะใช้กับระบบรางทีสามหรือระบบรางที่สี่ ในขณะที่แรงดันไฟฟ้าที่สูงกว่า 1 กิโลโวลต์ ปกติจะจำกัดใช้ในการเดินสายไฟในระบบเหนือศีรษะเพื่อเหตุผลทางด้านความปลอดภัย รถไฟชานเมืองสาย (S-Bahn) ในฮัมบวร์ค, เยอรมนีดำเนินงานโดยใช้รางที่สามที่แรงดัน 1200 V ฝรั่งเศสสาย SNCF Cu​​loz-Modane ในเทือกเขาแอลป์ใช้ 1,500 v ในรางที่สาม จนกระทั่ง 1976 เมื่อโซ่ถูกติดตั้งและรางสามถูกรื้อออก ในสหราชอาณาจักรทางตอนใต้ของกรุงลอนดอนใช้ 750 V กับรางที่สามถูกนำมาใช้ ในขณะที่ 660 V ถูกนำมาใช้เพื่อให้การเดินรถระหว่างที่ทำงานอยู่บนเส้นที่ใช้ร่วมกันกับรถไฟใต้ดินลอนดอนซึ่งใช้ 630 V กับระบบรางที่สี่ แต่ด้วยที่รางที่สี่ (กลาง) ที่เชื่อมต่อกับรางวิ่งในพื้นที่ระหว่างการทำงาน บางเส้นภายในลอนดอนยังคงการดำเนินงานที่ 660 โวลต์เนื่องจากการเชื่อมต่อกับเส้นที่ใช้ร่วมกันหรือด้วยเหตุผลเพื่อเป็นตำนาน ภายในลอนดอนสายใหม่ทั้งหมด (ใต้ดิน) เป็น 750 โวลต์

ในช่วงกลางศตวรรษที่ 20 converter แบบ rotary หรือวงจรเรียงกระแสแบบปรอทโค้งถูกนำมาใช้ในการแปลงไฟ AC เป็น DC ที่จำเป็นต้องใช้ที่สถานีป้อน วันนี้การแปลงดังกล่าวมักจะทำโดยเซมิคอนดักเตอร์วงจรเรียงกระแสหลังจากลดแรงดันลงจากแหล่งจ่ายสาธารณูปโภค

ระบบ DC ค่อนข้างง่าย แต่ต้องใช้สายหนาและระยะทางสั้น ระหว่างสถานีป้อนเพราะใช้กระแสสูงมาก นอกจากนี้ยังมีการสูญเสียความต้านทานอย่างมีนัยสำคัญ สถานีป้อนจำเป็นต้องมีการตรวจสอบอย่างต่อเนื่อง ระยะห่างระหว่างสองสถานีป้อนที่ 750 V บนระบบรางที่สามประมาณ 2.5 กิโลเมตร (1.6 ไมล์) ระยะห่างระหว่างสองสถานีป้อนที่ 3 กิโลโวลต์เป็นเรื่องเกี่ยวกับ 7.5 กิโลเมตร (4.7 ไมล์)

ถ้าบนขบวนรถไฟมีอุปกรณ์ไฟฟ้าอื่นเช่นพัดลมและคอมเพรสเซอร์ ถ้าต้องใช้พลังงานจากมอเตอร์ที่เลี้ยงโดยตรงจากแหล่งจ่าย สายเคเบิลที่เป็นสายส่งอาจจะมีขนาดใหญ่ขึ้นเนื่องจากต้องเพิ่มขนาดของสายและแนวฉนวน ทางเลือกคืออุปกรณ์เหล่านั้นสามารถขับเคลื่อนจากชุดมอเตอร์-เครื่องกำเนิดไฟฟ้า ซึ่งเป็นทางเลือกของการเปิดหลอดไฟ incandescent lights มิฉะนั้นจะต้องมีการเชื่อมต่อเป็นหลอดไฟกันเป็นแถวยาวเนื่องจากความดันที่ส่งให้มีขนาดสูงมาก (หลอดไฟที่ออกแบบมาเพื่อทำงานที่แรงดันไฟฟ้า (750V) จะทำงานโดยไม่มีประสิทธิภาพ) ตอนนี้ converter แบบ solid-state (SIVs) และไฟเรืองแสงสามารถถูกนำมาใช้งานได้ ทางเลือกคือ ไฟ DC สามารถแปลงเป็นไฟฟ้า AC ผ่านอินเวอร์เตอร์บนตู้รถไฟเพื่อจ่ายพลังงานให้กับอุปกรณ์เสริมเหล่านั้น และด้วยการเปิดตัวของมอเตอร์แรงฉุด AC รถไฟทั้งขบวน (ตัวอย่างคือ ระบบขับเคลื่อนหลายตู้ ชั้น FP ของนิวซีแลนด์ ใช้ไฟ 1500 V DC จากสายส่งชานเมืองในเวลลิงตัน ซึ่งแปลงไฟกระแสตรงเป็นไฟฟ้ากระแสสลับบนตู้รถไฟสำหรับการใช้งานโดยฉุดมอเตอร์และอุปกรณ์เสริมบนตู้รถไฟ)

ระบบการจ่าย

[แก้]

มี 3 ระบบคือ

  1. ระบบจ่ายไฟฟ้าเหนือหัว
  2. ระบบรางที่สาม
  3. ระบบรางที่สี่
  4. ระบบแหนบรับไฟ

กระแสสลับ

[แก้]

ระบบจ่ายกระแสไฟฟ้า AC จะเป็นแบบเหนือศีรษะได้อย่างเดียว กระแสสลับสามารถเปลี่ยนแรงดันไฟฟ้าให้ลดลงได้ภายในหัวรถจักร ใช้แรงดันไฟฟ้าที่สูงมากเพื่อให้มีกระแสน้อยลง สายส่งจึงมีขนาดเล็กลง ซึ่งหมายถึงการสูญเสียพลังงานน้อยลงไปตามทางยาวของเส้นทางรถไฟ

กระแสสลับความถี่ต่ำ

[แก้]
รถไฟฟ้าในสวิตเซอร์แลนด์ใช้ไฟ 15 kV 16.7 Hz AC

มอเตอร์ไฟฟ้า DC ที่มีตัวสลับทิศทางธรรมดา ยังสามารถเลี้ยงด้วย AC (มอเตอร์ทั่วไป) เพราะการย้อนกลับของกระแสในสเตเตอร์และโรเตอร์ไม่เปลี่ยนทิศทางของแรงบิด อย่างไรก็ตามการเหนี่ยวนำของขดลวดที่ทำให้ตอนเริ่มต้นของการออกแบบมอเตอร์ขนาดใหญ่เป็นไปไม่ได้ในทางปฏิบัติที่ความถี่ AC มาตรฐาน นอกจากนี้ AC ก่อให้เกิดกระแสไหลวน (eddy current) โดยเฉพาะอย่างยิ่งใน pole สนามที่ไม่เคลือบ ซึ่งก่อให้เกิดความร้อนสูงเกินไปและการสูญเสียประสิทธิภาพ ในศตวรรษที่ก่อนหน้านี้ห้าประเทศในยุโรป ได้แก่ เยอรมนี, ออสเตรีย, สวิตเซอร์แลนด์, นอร์เวย์และสวีเดนสร้างมาตรฐานที่ 15 kV 16 2/3 เฮิรตซ์ (หนึ่งในสามของความถี่ไฟปกติ) AC เฟสเดียว ในความพยายามที่จะบรรเทาปัญหาดังกล่าว เมื่อตุลาคม 16, 1995, เยอรมนี, ออสเตรียและสวิสเปลี่ยนการกำหนดที่ 16 ⅔ Hz เป็น 16.7 เฮิร์ตซ์ (แม้ว่าความถี่ที่เกิดขึ้นจริงไม่ได้เปลี่ยน, การข้ดกำหนดมีการเปลี่ยน; ในทั้งสองกรณีความเบี่ยงเบนทางความถี่ไปจากความถี่กลางอยู่ที่± 1/3 เฮิร์ตซ์ )

ในประเทศสหรัฐอเมริกา, ใช้ 25 Hz, ความถี่เก่าที่ครั้งหนึ่งพบบ่อยในอุตสาหกรรมถูกนำใช้ในระบบของแอมแทรก ที่ 11 กิโลโวลต์ในภาคตะวันออกเฉียงเหนือระหว่างวอชิงตันดีซีและนครนิวยอร์กและระหว่างแฮร์ริส, ซิลเวเนียและฟิลาเดลเฟีย 12.5 กิโลโวลต์ 25 Hz ส่วนระหว่างมหานครนิวยอร์กและนิวเฮเวน, คอนเนตทิคัทถูกดัดแปลงเป็น 60 Hz ในไตรมาสที่สามสุดท้ายของศตวรรษที่ 20

ในสหราชอาณาจักร, ลอนดอน, ไบรท์ตัน, ชายฝั่งตอนใต้ รถไฟเป็นหัวหอกในการใช้พลังงานไฟฟ้าระบบเหนือศีรษะของสายส่งชานเมืองในลอนดอน, สะพานลอนดอนถึงวิกตอเรียถูกเปิดการจราจรบน 1 ธันวาคม 1909 วิกตอเรียถึงคริสตัลพาเลซผ่าน Balham และนอร์วูดตะวันตกเปิดพฤษภาคม 1911 เพคแฮมไรอ์ถึงนอร์วูดตะวันตกเปิดในมิถุนายน 1912 การขยายเส้นทางทำไม่ได้เนื่องจากสงครามโลกครั้งที่หนึ่ง สองเส้นทางเปิดใน 1925 ภายใต้ทางรถไฟสายใต้ให้บริการ Coulsdon เหนือและสถานีรถไฟซัตตัน. การรถไฟใช้ไฟฟ้าที่ 6.7 กิโลโวลต์ 25 เฮิร์ตซ์ ได้มีการประกาศใน 1926 ว่าทุกเส้นทางจะถูกแปลงเป็น DC รางที่สามและระบบเหนือศีรษะสุดท้ายจะใช้จนถึงเดือนกันยายน 1929

ในระบบดังกล่าว มอเตอร์แรงฉุดสามารถได้รับกระแสไฟป้อนผ่านหม้อแปลงที่มีหลาย tap การเปลี่ยนแทปช่วยให้แรงดันไฟฟ้าที่มอเตอร์จะมีการเปลี่ยนแปลงโดยไม่ต้องมีตัวต้านทานไฟฟ้า เครื่องจักรอุปกรณ์เสริมจะถูกขับด้วยมอเตอร์สลับทางขนาดเล็กที่ได้รับพลังงานมาจากขดลวดแรงดันต่ำแยกต่างหากของหม้อแปลงหลัก

การใช้คลื่นความถี่ต่ำต้องใช้ไฟฟ้าที่ได้รับการดัดแปลงมาจากกระแสไฟจากการไฟฟ้าโดยมอเตอร์-เจนเนอเรเตอร์หรืออินเวอร์เตอร์แบบคงที่ที่สถานีย่อยหรือผลิตไฟฟ้าที่สถานีไฟฟ้าแยกต่างหาก

ตั้งแต่ปี 1979 มอเตอร์เหนี่ยวนำสามเฟสได้เกือบจะกลายเป็นที่ใช้กันในระดับสากล มันถูกป้อนกระแสโดย static four-quadrant converter ซึ่งจ่ายแรงดันไฟฟ้าคงที่ให้กับ pulse-width modulator inverter ที่จ่ายไฟฟ้าให้มอเตอร์สามเฟสความถี่แปรได้

ระบบกระแสสลับหลายเฟส

[แก้]

รถไฟกระแสไฟฟ้า AC 3 เฟสถูกใช้ในอิตาลี สวิตเซอร์แลนด์และสหรัฐอเมริกาในต้นศตวรรษที่ 20 ระบบในตอนต้นใช้

ความถี่ต่ำ (16⅔ Hz) และแรงดันไฟฟ้าที่ค่อนข้างต่ำ (3,000 หรือ 3,600 โวลต์) ระบบจะสร้างพลังงานจากการเบรก ป้อนกลับไปยังระบบ จึงมีความเหมาะสมอย่างยิ่งสำหรับรถไฟที่ใช้ในเขตภูเขา (หัวรถจักรอีกขบวนสามารถใช้พลังนี้ได้) ระบบมีข้อเสียของการที่ต้องใช้ตัวนำเหนือศีรษะสอง (หรือสาม) ที่แยกเป็นสัดส่วนบวก return path ผ่านทางราง หัวรถจักรไฟฟ้าทำงานที่ความเร็วคงที่ ที่หนึ่ง, สองหรือสี่สปีด

ระบบยังถูกนำมาใช้บนภูเขาสี่ลูก รถไฟใช้ 725-3,000 V at 50 หรือ 60 Hz: (Corcovado Rack ในริโอเดอจาเนโร, บราซิล, Jungfraubahn และ Gornergratbahn ในประเทศสวิสเซอร์แลนด์และ Petit รถไฟ de la Rhune ในประเทศฝรั่งเศส)

มาตรฐานความถี่กระแสสลับ

[แก้]

เฉพาะในปี 1950 หลังการพัฒนาในประเทศฝรั่งเศส (20 kV; ต่อมา 25 กิโลโวลต์) และรถไฟอดีตประเทศสหภาพโซเวียต (25 kV) ได้มาตรฐานความถี่เฟสเดียวกระแสสลับกลายเป็นที่แพร่หลาย ความถี่ที่ใช้คือ 50 Hz

สหรัฐปกติจะใช้ 12.5 หรือ 25 kV 25 Hz หรือ 60 Hz. กระแสไฟ AC เป็นที่นิยมใช้สำหรับรถไฟความเร็วสูงและรถไฟระยะทางไกลสายทางใหม่ๆ

ทุกวันนี้ หัวรถจักรบางหัวในระบบนี้ใช้หม้อแปลงไฟฟ้​​าและวงจรเรียงกระแสเพื่อจ่ายไฟฟ้ากระแสตรงแรงดันต่ำในรูปของพั้ลส์ให้กับมอเตอร์ ความเร็วจะถูกควบคุมโดยการแท๊ปในหม้อแปลง หัวจักรที่ซับซ้อนมากขึ้นใช้ทรานซิสเตอร์หรือ IGBT เพื่อสร้างกระแสสลับที่ถูกตัดยอดคลื่นหรือแม้แต่ปรับความถี่ได้ เพื่อส่งไปยัง AC มอเตอร์เหนี่ยวนำที่ใช้ในการฉุดลากขบวนรถ

ระบบนี้ค่อนข้างประหยัด แต่ก็มีข้อบกพร่องของ: เฟสของระบบไฟฟ้าภายนอกจะถูกโหลดอย่างไม่เท่ากันและเกิดการรบกวนทางแม่เหล็กไฟฟ้าที่สร้างอย่างมีนัยสำคัญเช่นเดียวกับเสียงรบกวนอย่างมีนัยสำคัญ

รายชื่อประเทศที่ใช้ 25 กิโลโวลต์ AC 50 Hz ระบบเฟสเดียวสามารถพบได้ในรายการของระบบกระแสสำหรับการลากรถไฟไฟฟ้า

ภาพแสดง pantograph แบบ diamond สำหรับรับกระแสมาให้หัวรถจักรผ่านทางหน้าสัมผ้สที่อยู่บนสุด

เพื่อป้องกันความเสี่ยงของ out of phase ของไฟฟ้าจากหลายแหล่ง หลายช่วงของสายส่งจากสถานีที่ต่างกันจะต้องถูกแยกออกอย่างเคร่งครัด สิ่งนี่ทำได้โดย Neutral Section (หรือ Phase Breaks), มักจะถูกจัดให้ที่สถานีจ่ายและอยู่ระหว่างสถานีจ่ายนั้น แม้ว่าปกติมีเพียงครึ่งหนึ่งที่ทำงานอยู่ในเวลาใดเวลาหนึ่ง ที่เหลือถูกจัดให้เพื่อให้สถานีป้อนปิดตัวลงและพลังงานจะถูกจ่ายมาจากสถานีป้อนที่อยู่ติดกัน Neutral Section มักจะประกอบด้วยส่วนสายดินของลวดซึ่งถูกแยกออกจากสาย live โดยวัสดุฉนวน, ลูกถ้วยเซรามิกที่ถูกออกแบบเพื่อให้อุปกรณ์รับกระแสไฟฟ้าบนหัวรถจักร (pantograph) สามารถจะเคลื่อนออกมาจากส่วนหนึ่งไปที่ส่วนอื่น ๆได้อย่างราบรื่น ส่วนสายดินป้องกันการเกิดอาร์คจากเซ็กชั่น live หนึ่งไปยังอีกเซ็กชั่นหนึ่ง เพราะความแตกต่างของแรงดันไฟฟ้าที่อาจจะสูงกว่าแรงดันไฟฟ้าระบบปกติมาก ถ้าเซ็กชั่น live มีเฟสต่างกันและและเบรกเกอร์วงจรป้องกันอาจจะไม่สามารถหยุดยั้งกระแสได้อย่างปลอดภัย เพื่อป้องกันความเสี่ยงจากการอาร์คระหว่างสาย live กับดิน, เมื่อขบวนรถวิ่งผ่านส่วน neutral, รถไฟต้องไหลไปเองและวงจรเบรกเกอร์จะต้องเปิด ในหลาย ๆ กรณีงานนี้จะทำโดยพนักงานขับรถ. เพื่อช่วยพวกเขา, กระดานเตือนจะถูกจัดให้ก่อนที่จะถึงส่วน neutral กระดานเตือนต้วต่อไปจะแจ้งเตือนพนักงานขับรถให้ปิดวงจรเบรกเกอร์อีกครั้งหนึ่ง, พนักงานขับรถจะต้องไม่ทำเช่นนี้จนกว่า pantograph ตัวหลังจะผ่านกระดานไปแล้ว ในสหราชอาณาจักรอุปกรณ์ที่เรียกกันว่า Automatic Power Control (APC) จะเปิดและปิดวงจรไฟฟ้านี้โดยอัตโนมัติ ซึ่งทำได้โดยการใช้ชุดของแม่เหล็กถาวรควบคู่ไปกับการสลับเส้นทางด้วยเครื่องตรวจจับบนรถไฟ การดำเนินการเฉพาะที่จำเป็นโดยคนขับก็คือการปิดพลังงานไฟฟ้าและปล่อยให้ขบวนไหลเลื่อนไปเอง อย่างไรก็ตามกระดานเตือนยังคงมีในจุดที่และในส่วนที่กำลังเข้าไปยังส่วน neutral

ในเส้นทางรถไฟความเร็วสูงฝรั่งเศส, ในรางเชื่อมอุโมงค์ข้ามช่องแคบความเร็วสูงที่ 1 ของสหราชอาณาจักรและในอุโมงค์ข้ามช่องแคบ neutral section จะถูกควบคุมโดยอัตโนมัติ

ในสาย ชิงกันเซ็ง ของญี่ปุ่น section ที่ switch ด้วยกราวด์ ถูกติดตั้งแทน neutral section section จะตรวจจับขบวนรถไฟที่กำลังวิ่งอยู่ภายใน section นี้ และทำการสลับแหล่งพลังงานโดยอัตโนมัติภายใน 0.3 วินาที, ซึ่งไม่จำเป็นต้องปิดไฟอีกเลย

การใช้พลังงานไฟฟ้าในโลก

[แก้]

ในปี 2006, 240,000 กิโลเมตร (25% โดยความยาว) ของเครือข่ายรางรถไฟโลกมีกระแสไฟฟ้าในรางและ 50% ของการขนส่งทางรถไฟได้รับการดำเนินการโดยไฟฟ้าลาก

ข้อดีและข้อเสีย

[แก้]

ข้อดี

[แก้]

สายทางไฟฟ้าใหม่มักจะ "จุดประกาย" ด้วยเหตุนี้การใช้พลังงานไฟฟ้าในระบบรถไฟโดยสารนำไปสู่​​การก้าวกระโดดที่สำคัญของรายได้. เหตุผลอาจรวมถึงการเดินทางด้วยรถไฟฟ้าถูกมองว่าเป็นคนที่ทันสมัย​​และน่าสนใจ, การบริการที่รวดเร็วและราบรื่น, และความจริงที่ว่าระบบไฟฟ้ามักจะไปด้วยกันกับโครงสร้างพื้นฐานทั่วไปและเพิ่มการพัฒนาทางด้านเศรษฐกิจ ไม่ว่าอะไรที่เป็นสาเหตุของการจุดประกาย เส้นทางจำนวนมากได้ถูกสร้างขึ้นโดยใช้ไฟฟ้าเป็นเวลาหลายทศวรรษ

อื่นๆ

[แก้]
  • ลดค่าใช้จ่ายของโครงการ, การวิ่งบริการและการบำรุงรักษาหัวรถจักรและตู้พ่วง
  • อัตราส่วนของกำลังงานต่อน้ำหนักรถสูง
  • ใช้หัวรถจักรน้อยลง
  • เร่งออกตัวได้เร็วขึ้น
  • ขีดจำกัดในทางปฏิบัติในการใช้งานน้อยลง เพิ่มโหลดได้มากขึ้น
  • เพิ่มความเร็วสูงขึ้น
  • มลพิษทางเสียงน้อย (การทำงานที่เงียบ)
  • เมื่อเร่งความเร็วจากการออกตัวได้เร็วขึ้นทำให้ เคลียร์ทางเร็วขึ้น เพิ่มจำนวนขบวนรถไฟบนทางในเมืองได้
  • การสูญเสียพลังงานลดลงไปมาก (สำหรับการสูญเสียพลังงานดูเครื่องยนต์ดีเซล)
  • ใช้แหล่งพลังงานที่ยืดหยุ่น ลดค่าใช้จ่ายในการเดินรถจากราคาน้ำมันที่มีความผันผวน
  • ให้บริการในสถานีรถไฟใต้ดิน ซึ่งรถไฟดีเซลไม่สามารถใช้ได้เนื่องจากเหตุผลด้านความปลอดภัย
  • มลพิษทางสิ่งแวดล้อมที่ลดลงโดยเฉพาะอย่างยิ่งในเขตเมืองมีประชากรสูงแม้ว่าไฟฟ้าถูกผลิตโดยเชื้อเพลิงฟอสซิล
  • สามารถรองรับการเรียกคืนพลังงานจลน์จากเบรกโดยใช้ตัวเก็บประจุยิ่งยวด ( supercapacitors)

ข้อเสีย

[แก้]
  • ค่าใช้จ่ายในการใช้พลังงานไฟฟ้า: ระบบไฟฟ้าต้องสร้างโครงสร้างพื้นฐานใหม่ทั้งหมดซึ่งจะถูกสร้างขึ้นรอบรางที่มีอยู่ด้วยค่าใช้จ่ายที่มีนัยสำคัญ ค่าใช้จ่ายจะสูงโดยเฉพาะอย่างยิ่งเมื่ออุโมงค์, สะพานและสิ่งกีดขวางอื่น ๆ จะต้องมีการเปลี่ยนแปลงให้มีระยะห่าง ส่วนอื่นที่สามารถเพิ่มค่าใช้จ่ายของการใช้พลังงานไฟฟ้าก็คือการปรับเปลี่ยนหรืออัพเกรดระบบอาณัติสัญญาณที่จำเป็นสำหรับลักษณะการจราจรใหม่ และเพื่อปกป้องวงจรสัญญาณและวงจรของรางจากการรบกวนโดยการกระแสไฟฟ้าที่ใช้ในการฉุดลาก
  • เพิ่มโหลดภาระองค์การไฟฟ้​​า: การเพิ่มผู้บริโภคไฟฟ้ารายใหม่จะมีผลกระทบต่อระบบเครือข่ายไฟฟ้าและอาจจำเป็นต้องมีการเพิ่มกำลังการผลิตพลังงานจ่ายให้ระบบเครือข่าย อย่างไรก็ตามรถไฟสามารถมีเครือข่ายไฟฟ้าเป็นของตัวเองและเพื่อการสำรองพลังงานที่สามารถใช้ได้ถ้าระบบเครือข่ายไฟฟ้าของรัฐมีปัญหา
  • ลักษณะภายนอก: โครงสร้างสายเหนือศีรษะและสายเคเบิลสามารถมีผลกระทบต่อภูมิทัศน์อย่างมีนัยสำคัญเมื่อเทียบกับที่ไม่ใช่ไฟฟ้าหรือทางรถไฟรางที่สามที่มีเพียงแค่อุปกรณ์ส่งสัญญาณบางส่วนเท่านั้นที่อยู่เหนือระดับพื้นดิน
  • เปราะบางและไม่มั่นคง: ระบบการใช้พลังงานไฟฟ้าเหนือศีรษะสามารถประสบภาวะชะงักงันอย่างรุนแรงอันเนื่องมาจากกลไกมีความผิดพลาดเล็ก ๆ น้อย ๆ หรือผลกระทบของกระแสลมแรงที่ทำให้ pantograph ที่กำลังเคลื่อนที่ไปพันกับสายไฟเหนือศีรษะ (catenary), ฉีกสายไฟหลุดจากตัวยึด ความเสียหายมักจะไม่จำกัดแค่ทางเดินรถทางใดทางหนึ่งแต่อาจขยายไปยังทางข้างเคียงด้วย ทำให้ตลอดเส้นทางจะถูกบล็อกเป็นเวลานาน ระบบรางที่สามสามารถประสบภาวะชะงักงันในสภาพอากาศหนาวเย็นเนื่องจากน้ำแข็งก่อตัวขึ้นบนราวตัวนำ.
ภาพแสดง catenary
  • ขโมย: ราคาเศษทองแดงที่สูงและการไม่ได้รับการป้องกัน, การติดตั้งในที่ห่างไกลทำให้สายเหนือศีรษะเป็นเป้าหมายที่น่าสนใจสำหรับพวกขโมยโลหะ ความพยายามที่จะขโมยสายเคเบิลที่มีแรงดันไฟฟ้าอยู่ขนาด 25 kV อาจจบลงด้วยความตายของขโมยเนื่องจากถูกไฟฟ้าดูด ในสหราชอาณาจักร การโจรกรรมสายเคเบิลจะถูกอ้างว่าเป็นหนึ่งในสาเหตุใหญ่ที่สุดของความล่าช้าและการหยุดชะงักในการให้บริการ

ข้อจำกัด

[แก้]

สายเหนือศีรษะส่วนใหญ่ไม่เว้นระยะความสูงให้พอเพียงสำหรับรถโดยสารสองชั้น ค่าใช้จ่ายในการบำรุงรักษาของการเดินรถอาจจะเพิ่มขึ้น แต่หลายระบบอ้างว่าค่าใช้จ่ายลดลงเนื่องจากการลดการสึกหรอและจากขบวนรถมีน้ำหนักเบาลง มีค่าใช้จ่ายบางรายการในการบำรุงรักษาเพิ่มเติมที่เกี่ยวข้องกับอุปกรณ์ไฟฟ้า เช่น สถานีไฟฟ้าย่อย และเสาขึงของสายเหนือศีรษะ แต่ถ้ามีการจราจรหนาแน่นเพียงพอ รายได้มีมูลค่าสูงกว่าค่าใช้จ่ายในการบำรุงรักษาและค่าใช้จ่ายในการเดินรถอย่างมีนัยสำคัญ

ผลกระทบจากระบบเครือข่ายพลังงานเป็นปัจจัยสำคัญที่มีผลต่อการตัดสินใจใช้พลังงานไฟฟ้า เมื่อมีการเปลี่ยนแปลงจากการเดินรถพลังงานอื่น เช่น น้ำมันให้เป็นการใช้พลังงานไฟฟ้า, การเชื่อมต่อกับระบบเดินรถอื่น ๆ จะต้องได้รับการพิจารณา การใช้ไฟฟ้าบางระบบเดินรถก็ถูกรื้อออกเนื่องจากทางผ่านเป็นบริเวณที่ไม่มีระบบเครือข่ายไฟฟ้า ถ้าทางผ่านเป็นพื้นที่มีประโยชน์ทางเศรษฐกิจ การสลับขบวนที่ต้องใช้เวลามากอาจเกิดขึ้นเพื่อเชื่อมต่อดังกล่าว หรือต้องใช้ระบบเครื่องยนต์สองโหมดที่มีราคาแพง เรื่องนี้เป็นประเด็นส่วนใหญ่สำหรับการเดินทางระยะไกล แต่หลายสายการเดินรถเข้ามาครอบงำโดยใช้ขบวนสินค้าแบบลากยาว (ปกติใช้บรรทุกถ่านหิน, แร่ธาตุ, หรือคอนเทนเนอร์ไปหรือออกจากท่าเรือ) ในทางทฤษฎีรถไฟเหล่านี้อาจดูคุ้มค่าไปกับการลดต้นทุนผ่านการใช้พลังงานไฟฟ้า แต่อาจจะมีราคาแพงเกินไปที่จะขยายการใช้พลังงานไฟฟ้าไปยังพื้นที่ที่โดดเดี่ยวจากระบบเครือข่ายพลังงาน นอกเสียจากเครือข่ายขนส่งทั้งหมดจะมีกระแสไฟฟ้า บริษัทเหล่านั้นมักจะพบว่าพวกเขาต้องการที่จะยังคงใช้รถไฟดีเซลแม้ว่ามีบางส่วนเป็นระบบไฟฟ้า ความต้องการที่เพิ่มขึ้นสำหรับการขนส่งคอนเทนเนอร์ที่มีประสิทธิภาพมากขึ้นเมื่อใช้รถสองชั้นยังมีประเด็นที่มีผลกระทบต่อเครือข่ายของการจ่ายไฟฟ้า เนื่องจากมีระยะเหนือศีรษะไม่เพียงพอของสายไฟฟ้าเหนือศีรษะ แม้ว่าการจ่ายพลังงานไฟฟ้าสามารถสร้างหรือปรับเปลี่ยนเพื่อให้มีช่องว่างเหนือศีรษะเพิ่มเพียงพอได้ เพราะมีค่าใช้จ่ายเพิ่มเติม

นอกจากนี้ยังมีปัญหาของการเชื่อมต่อระหว่างผู้ให้บริการไฟฟ้าที่แตกต่างกัน โดยเฉพาะอย่างยิ่งการเชื่อมต่อระหว่างไฟฟ้าภายในเมืองกับไฟฟ้าสำหรับการโดยสาร, และระหว่างสายชุมชนด้วยกันแต่คนละมาตรฐาน นี้สามารถทำให้เกิดการใช้พลังงานไฟฟ้าของการเชื่อมต่อบางอย่างที่จะมีราคาแพงมากเพียงเพราะผลกระทบในส่วนที่มีการเชื่อมต่อ หลายสายนำมาตรฐานที่แตกต่างกันมาซ้อนทับกันเพื่อหลีกเลี่ยงการเปลี่ยนตู้สัมภาระ ในบางกรณีมีรถไฟดีเซลวิ่งไปตามเส้นทางไฟฟ้​​าอย่างสมบูรณ์และนี้อาจจะเป็นเพราะความไม่ลงรอยกันของมาตรฐานการใช้พลังงานไฟฟ้าไปตามเส้นทาง

สรุปข้อดีและข้อเสีย

[แก้]
  • เส้นทางที่มีการใช้งานน้อยอาจจะไม่เหมาะสมสำหรับการใช้พลังงานไฟฟ้า (โดยเฉพาะอย่างยิ่งการสร้างพลังงานจากการเบรก) เพราะค่าใช้จ่ายที่สูงกว่าของการบำรุงรักษามากกว่ารายได้การเดินรถ ดังนั้นส่วนใหญ่สายทางไกลในอเมริกาเหนือและประเทศกำลังพัฒนาจำนวนมากไม่ได้ใช้ไฟฟ้าเนื่องจากความถี่ในการเดินรถที่ค่อนข้างต่ำ
  • หัวรถจักรไฟฟ้าอาจถูกสร้างได้อย่างง่ายดายโดยให้มีพลังมากกว่าหัวรถจักรดิเซลส่วนใหญ่ สำหรับงานโดยสารทั่วไป มันเป็นไปได้ที่จะใช้ด้วยเครื่องยนต์ดีเซล (ดู 'ICE TD') แต่ไม่ใช่ที่ความเร็วสูงๆ ซึ่งพิสูจน์ได้ว่าแพงและไม่ควรนำมาปฏิบัติ ดังนั้นเกือบทั้งหมดของรถไฟความเร็วสูงจะเป็นไฟฟ้า
  • พลังงานที่สูงของหัวรถจักรไฟฟ้าให้ความสามารถในการดึงตู้ขนส่งสินค้าที่ความเร็วสูงกว่าบนทางลาดชัน; ในสภาพการจราจรที่ผสม สิ่งนี้เพิ่มกำลังความสามารถและลดเวลาระหว่างขบวนลง พลังงานที่สูงขึ้นของหัวรถจักรไฟฟ้าและการใช้กระแสไฟฟ้ายังสามารถเป็นทางเลือกที่ถูกกว่าสำหรับระบบรางใหม่และรางลาดชั้นน้อย ถ้าหากน้ำหนักรถไฟจะเพิ่มขึ้นในระบบ

ประสิทธิภาพการใช้พลังงาน

[แก้]

รถไฟที่ใช้ไฟฟ้าเป็นการใช้พลังงานที่มีประสิทธิภาพกว่ารถไฟดีเซล ถ้าไดัรับพลังงานจากสถานีผลิตไฟฟ้าคาร์บอนต่ำ รถไฟไฟฟ้าปล่อยคาร์บอนไดอ๊อกไซด์น้อยลง

รถไฟไฟฟ้าไม่จำเป็นต้องแบกน้ำหนักของหัวลากหลัก สายส่งและเชื้อเพลิง นี่คือการชดเชยบางส่วนกับน้ำหนักของอุปกรณ์ไฟฟ้า

การสร้างพลังงานจากระบบเบรกส่งไฟฟ้าคืนระบบเพื่อที่ว่ามันอาจจะเอาไปใช้ที่อื่น โดยรถไฟอื่น ๆ ในระบบเดียวกันหรือกลับไปยังเครือข่ายส่งกำลังไฟฟ้า นี้จะเป็นประโยชน์โดยเฉพาะอย่างยิ่งในพื้นที่ที่เป็นภูเขาในที่ซึ่งรถไฟที่โหลดหนักต้องขึ้นลงทางลาดชัน

ไฟฟ้าสถานีกลางสามารถสร้างพลังงานได้อย่างมีประสิทธิภาพสูงกว่าเครื่องยนต์/เครื่องกำเนิดไฟฟ้าเคลื่อนที่ โรงไฟฟ้​​าเชื้อเพลิงฟอสซิลขนาดใหญ่ทำงานที่มีประสิทธิภาพสูง และสามารถนำไปใช้ให้ความร้อนหรือผลิตความเย็นให้กับชุมชนซึ่งจะนำไปสู่​​การเพิ่มประสิทธิภาพโดยรวมสูงขึ้น

สามารถใช้แหล่งพลังงานที่ไม่เหมาะสมสำหรับการผลิตไฟฟ้าแบบเคลื่อนที่ได้ เช่น พลังงานนิวเคลียร์, โรงไฟฟ้าพลังน้ำ, หรือพลังงานลม หรือแก๊ส ตามที่ได้รับการยอมรับอย่างกว้างขวางทั่วโลกของปริมาณพลังงานสำรอง สำรองของเชื้อเพลิงเหลวมีน้อยกว่าก๊าซและถ่านหินมาก (ที่ 42, 167 และ 416 ปีตามลำดับ) เหมาะกับประเทศส่วนใหญ่ที่มีเครือข่ายรถไฟขนาดใหญ่ที่ไม่ได้มีน้ำมันสำรอง แต่ประเทศที่มี, เช่น ประเทศสหรัฐอเมริกาและสหราชอาณาจักร ได้ใช้น้ำมันสำรองของตนออกไปมากและได้รับความเดือดร้อนการส่งออกน้ำมันที่ลดลงมานานหลายทศวรรษ ดังนั้นนอกจากนี้ยังมีแรงจูงใจทางเศรษฐกิจที่แข็งแกร่งเพื่อทดแทนเชื้อเพลิงอื่น ๆ แทนน้ำมัน รถไฟกระแสไฟฟ้ามักจะถือว่าเป็นเส้นทางสำคัญที่มีต่อการปฏิรูปรูปแบบการบริโภค.

ค่าใช้จ่ายภายนอก

[แก้]

ค่าใช้จ่ายภายนอกของรถไฟมีน้อยกว่าระบบการขนส่งแต่การใช้พลังงานไฟฟ้าทำให้ค่าใช้จ่ายนั้นน้อยลงไปอีกถ้ามันยั่งยืน

นอกจากนี้การลดค่าใช้จ่ายพลังงานจากน้ำมันมาล้อ (well to wheel) และความสามารถในการลดมลพิษและแก๊สเรือนกระจกในชั้นบรรยากาศให้เป็นไปตามพิธีสารเกียวโตเป็นข้อได้เปรียบ

ระบบที่ไม่ใช้หน้าสัมผัส

[แก้]

มันเป็นไปได้ที่จะจ่ายกระแสไฟให้รถไฟโดยการเหนี่ยวนำไฟฟ้า นี้จะช่วยให้การใช้แรงดันสูง, ฉนวน, รางตัวนำ ระบบดังกล่าวได้รับการจดสิทธิบัตรใน 1894 โดยนิโคลา เทสลา สิทธิบัตรสหรัฐ 514,972. ต้องใช้กระแสสลับความถี่สูง เทสลาไม่ได้ระบุความถี่ แต่จอร์จ Trinkaus แสดงให้เห็นว่าประมาณ 1,000 เฮิรตซ์

การเหนี่ยวนำใช้กันอย่างแพร่หลายในการใช้งานพลังงานต่ำเช่นแปรงสีฟันไฟฟ้าใหม่ที่ชาร์จไฟใหม่ได้. เทคโนโลยีไร้หน้าสัมผัสสำหรับยานพาหนะบนรางกำลังทำการตลาดโดย บริษัท บอมบาร์เดียเป็น ชื่อ PRIMOVE.

ดูเพิ่ม

[แก้]
  • Amtrak's 60 Hz Traction Power System
  • Baltimore Belt Line
  • Conduit current collection
  • Current collector
  • Electric power supply system of railways in Sweden
  • Elektrichka
  • Ground-level power supply
  • High-speed rail
  • Interurban
  • มอเตอร์เชิงเส้น
  • List of current systems for electric rail traction
  • List of installations for 15kV AC railway electrification in Germany, Austria and Switzerland
  • List of railway electrification systems in Japan
  • Maglev train
  • Mariazellerbahn
  • Railway electrification in Great Britain
  • Railway electrification in India
  • Railway electrification in Iran
  • Railway Electrification in the United States
  • SEPTA's 25 Hz Traction Power System
  • Stud contact system
  • Three-phase AC railway electrification
  • Traction powerstation
  • Traction substation
  • Tram
  • Urban rail transit
  • รถไฟฟ้าบีทีเอส

อ้างอิง

[แก้]
  1. EN 50163: Railway applications. Supply voltages of traction systems (2007)
  2. IEC 60850: Railway applications – Supply voltages of traction systems, 3rd edition (2007)
{{bottomLinkPreText}} {{bottomLinkText}}
ระบบจ่ายไฟฟ้าแก่ทางรถไฟ
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?