For faster navigation, this Iframe is preloading the Wikiwand page for Prvi zakon termodinamike.

Prvi zakon termodinamike

Izvor: Wikipedija

Carnotov toplinski stroj prenosi energiju iz toplijeg (ogrjevnog) spremnika temperature TH u hladniji (rashladni) spremnik temperature TC, te pritom dio te toplinske energije (topline) pretvara u mehanički rad W.
Jedan od pokušaja da se ostvari perpetuum mobile.
Jouleov uređaj.

Prvi zakon termodinamike izveo je H. L. F. von Helmholtz (1847.) na temelju Jouleovih i Carnotovih radova. Prema tom je zakonu zbroj količina topline i mehaničkoga rada u zatvorenom sustavu stalan:

Količina topline dQ predana nekomu sustavu troši se samo na povećanje njegove unutarnje energije U (zagrijavanje) i na svladavanje vanjskoga tlaka p, a tlak se protivi povećanju obujma (volumena) sustava V. Prvi zakon termodinamike može se poopćiti u zakon očuvanja energije, prema kojem je u svakom zatvorenom sustavu zbroj svih oblika energije, uključujući i materiju, stalan. Drugim riječima to se može iskazati kao:[1]

Energija zatvorenog sustava ne može nestati niti ni iz čega nastati, energija može samo prelaziti iz jednog oblika u drugi, i ona je konstantna.

Ovaj zakon simbolički se može zapisati kao:

.

Dakle: Porast unutarnje energije sustava = Rad sustava + Količina topline dovedena u sustav.

Prvi zakon termodinamike često se izražava kao: Perpetuum mobile prve vrste nije moguć. Perpetuum mobile prve vrste bio bi uređaj koji bi u nekom procesu proizvodio energiju ni iz čega.

Jednakost topline i rada

[uredi | uredi kod]
Glavni članak: Zakon očuvanja energije

Da se trenjem stvara toplina, bilo je poznato već u staro doba kada se vatra dobivala tarući drvo o drvo. Znači, mehanički rad se može pretvoriti u toplinu. Da postoji određeni odnos između mehaničkog rada i toplinske energije prvi je utvrdio liječnik Robert Mayer 1843. Pokusima je taj brojčani odnos odredio engleski fizičar James Joule. Joule je izveo pokus tako da je uzeo dobro izoliranu posudu (da bi toplinski gubici bili što manji) u kojoj je voda. Na osovini koja se nalazi u posudi pričvršćene su lopatice koje se s osovinom mogu okretati zbog padanja utega težine G. Kada se lopatice okreću, nastaje trenje između tekućine i lopatica, pa se mehanički rad pretvara u toplinu. Kod padanja utega težine G za visinu h izvršen je mehanički rad:

Mjerenjem temperature vode prije i poslije pokusa dobije se računom da mehanički rad od 4 184 Nm proizvodi toplinu od 1 kcal. Prema tome, toplinska energija od 1 kcal je jednaka (ekvivalentna) mehaničkom radu od 4 184 Nm (J). Na toj činjenici osniva se prvi glavni stavak termodinamike koji glasi:

Toplina i mehanički rad su ekvivalentni, to jest jednako vrijedni.

Pretvaranje mehaničkog rada u toplinu zbiva se po određenom omjeru njihovih količina, i to tako da je:

1 kcal = 4 184 J = 1,16 ∙ 10-3 kWh [2]

Izvori

[uredi | uredi kod]
  1. termodinamika, [1] "Hrvatska enciklopedija", Leksikografski zavod Miroslav Krleža, www.enciklopedija.hr, 2016.
  2. Velimir Kruz: "Tehnička fizika za tehničke škole", "Školska knjiga" Zagreb, 1969.

Vidi još

[uredi | uredi kod]
{{bottomLinkPreText}} {{bottomLinkText}}
Prvi zakon termodinamike
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?