For faster navigation, this Iframe is preloading the Wikiwand page for Торический узел.

Торический узел

Материал из Википедии — свободной энциклопедии

(3,7)-торический узел.
Приз EureleA в виде (2,3)-торического узла.
(2,8)-торическое зацепление

Торический узел — специальный вид узлов, лежащих на поверхности незаузлённого тора в .

Торическое зацепление — зацепление, лежащее на поверхности тора. Каждый торический узел определяется парой взаимно простых целых чисел и . Торическое зацепление возникает, когда и не взаимно просты (в этом случае число компонент равно наибольшему общему делителю и ). Торический узел является тривиальным тогда и только тогда, когда либо , либо равны 1 или −1. Простейшим нетривиальным примером является (2,3)-торический узел, известный также как трилистник.

(2,−3)-торический узел, известный также как левый трилистник

Геометрическое представление

[править | править код]

Торический узел можно представить геометрически различными способами, топологически эквивалентными, но геометрически различными.

Обычно используется соглашение, что -торический узел вращается раз вокруг круговой оси тора и раз вокруг оси вращения тора. Если и не взаимно просты, то получается торическое зацепление, имеющее более одной компоненты. Соглашения о направлении, в котором нити вращаются вокруг тора, также различны, чаще всего предполагается правый винт для [1][2][3].

-торический узел может быть задан параметризацией[англ.]:

,
,
,

где и . Он лежит на поверхности тора, задаваемого формулой цилиндрических координатах).

Возможны и другие параметризации, поскольку узлы определены с точностью до непрерывной деформации. Примеры для (2,3)- и (3,8)-торических узлов можно получить, приняв , а в случае (2,3)-торического узла путём вычитания и из вышеприведённых параметризаций и .

Диаграмма (3,−8)-торического узла.

Торический узел является тривиальным тогда и только тогда, когда либо , либо равны 1 или −1[2][3].

Каждый нетривиальный торический узел является простым и хиральными.

-торический узел эквивалентен -торическому узлу[1][3]. -торический узел является обратным (зеркальным отражением) -торического узла[3]. -торический узел эквивалентен -торическому узлу, за исключением ориентации.

(3, 4) торический узел на развороте поверхности тора и слово косы

Любой -торический узел может быть построен из замкнутой косы с нитями. Подходящее слово косы[4]:

.

Эта формула использует соглашение, что генераторы косы используют правые вращения[2][4][5][6].

Число пересечений -торического узла с задаётся формулой:

.

Род торического узла с равен:

Многочлен Александера торического узла равен[1][4]:

.

Полином Джонса (правовинтовой) торического узла задаётся формулой:

.

Дополнение торического узла на 3-сфере — это многообразие Зейферта.

Пусть  — -мерный дурацкий колпак[англ.] с диском, удалённым внутри,  — -мерный дурацкий колпак с внутренним удалённым диском, и  — факторпространство, полученное отождествлением и вдоль границы окружности. Дополнение -торического узла является деформационным ретрактом пространства . Таким образом, группа узла торического узла имеет представление:

.

Торические узлы — это единственные узлы, чьи группы узла имеют нетривиальные центры (которые являются бесконечными циклическими группами, образованные элементом из этого представления).

Примечания

[править | править код]
  1. 1 2 3 Livingston, 1993.
  2. 1 2 3 Murasugi, 1996.
  3. 1 2 3 4 Kawauchi, 1996.
  4. 1 2 3 Lickorish, 1997.
  5. Dehornoy, P. et al. (2000). Why are braids orderable? http://www.math.unicaen.fr/~dehornoy/Books/Why/Dgr.pdf Архивная копия от 15 апреля 2012 на Wayback Machine
  6. Birman, Brendle, 2005.

Литература

[править | править код]
  • Charles Livingston. Knot theory. — Mathematical Association of America, 1993. — ISBN 0-88385-027-3.
  • Kunio Murasugi. Knot theory and its applications. — Birkhäuser, 1996. — ISBN 3-7643-3817-2.
  • Akio Kawauchi. A survey of knot theory. — Birkhäuser, 1996. — ISBN 3-7643-5124-1.
  • W. B. R. Lickorish. An introduction to knot theory. — Springer, 1997. — ISBN 0-387-98254-X.
  • J. S. Birman, T. E. Brendle. Handbook of knot theory / W. Menasco, M. Thistlethwaite. — Elsevier, 2005. — ISBN 0-444-51452-X..
  • J. Milnor. Singular Points of Complex Hypersurfaces. — Princeton University Press, 1968. — ISBN 0-691-08065-8.
Для улучшения этой статьи желательно: Проверить качество перевода с иностранного языка.После исправления проблемы исключите её из списка. Удалите шаблон, если устранены все недостатки.
{{bottomLinkPreText}} {{bottomLinkText}}
Торический узел
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?