For faster navigation, this Iframe is preloading the Wikiwand page for Солитон.

Солитон

Материал из Википедии — свободной энциклопедии

Солитон
Изображение
Первооткрыватель или изобретатель Рассел, Джон Скотт
Дата открытия (изобретения) 1834
Логотип Викисклада Медиафайлы на Викискладе
График «тёмного солитона»

Солито́н — структурно устойчивая уединённая волна, распространяющаяся в нелинейной среде.

Солитоны ведут себя подобно частицам (частицеподобная волна): при взаимодействии друг с другом или с некоторыми другими возмущениями они не разрушаются, а продолжают движение, сохраняя свою структуру неизменной. Это свойство может использоваться для передачи данных на большие расстояния без помех. Кроме того, в отличие от гармонических волн, классические солитоны помимо переноса энергии осуществляют также перенос вещества (сдвиг в направлении своего движения на конечное расстояние)[1].

История изучения солитона началась в августе 1834 года на берегу канала Юнион вблизи Эдинбурга. Джон Скотт Рассел наблюдал на поверхности воды явление, которое он назвал уединённой волной — «solitary wave»[2][3][4].

Впервые понятие солитона было введено для описания нелинейных волн, взаимодействующих как частицы[5]. Свойство солитонов переносить вещество предложено использовать в качестве одного из механизмов возбуждения электрических токов в плазме[6] и разделения вещества и антивещества в ранней Вселенной[7].

Солитоны бывают различной природы:

  • на поверхности жидкости[8] (первые солитоны, обнаруженные в природе[9]), иногда считают таковыми волны цунами и бор[10]
  • ионозвуковые и магнитозвуковые солитоны в плазме[11]
  • гравитационные солитоны в слоистой жидкости[12]
  • солитоны в виде коротких световых импульсов в активной среде лазера[13]
  • можно рассматривать в качестве солитонов нервные импульсы[14]
  • солитоны в нелинейно-оптических материалах[15][16]
  • солитоны в воздушной среде[17]

Математическая модель

[править | править код]
Распад синусоидальной волны на солитоны, наблюдавшийся Забуски и Крускалом при численном решении уравнения КдФ

Одной из простейших и наиболее известных моделей, допускающих существование солитонов в решении, является уравнение Кортевега — де Фриза:

Одним из возможных решений данного уравнения является уединённый солитон:

где  — амплитуда солитона,  — фаза. Эффективная ширина основания солитона равна . Такой солитон движется со скоростью . Видно, что солитоны с большой амплитудой оказываются более узкими и движутся быстрее[18].

В более общем случае можно показать, что существует класс многосолитонных решений, таких что асимптотически при решение распадается на несколько удалённых одиночных солитонов, движущихся с попарно различными скоростями. Общее N-солитонное решение можно записать в виде

где матрица даётся выражением

Здесь и  — произвольные вещественные постоянные.

Замечательным свойством многосолитонных решений является безотражательность: при исследовании соответствующего одномерного уравнения Шрёдингера

с потенциалом , убывающим на бесконечности быстрее чем , коэффициент отражения равен 0 тогда и только тогда, когда потенциал есть некоторое многосолитонное решение уравнения КдФ в некоторый момент времени .

Интерпретация солитонов как некоторых упруго взаимодействующих квазичастиц основана на следующем свойстве решений уравнения КдФ. Пусть при решение имеет асимптотический вид солитонов, тогда при оно также имеет вид солитонов с теми же самыми скоростями, но другими фазами, причём многочастичные эффекты взаимодействия полностью отсутствуют. Это означает, что полный сдвиг фазы -го солитона равен

Пусть -й солитон движется быстрее, чем -й, тогда

то есть фаза более быстрого солитона при парном столкновении увеличивается на величину , а фаза более медленного — уменьшается на , причём полный сдвиг фазы солитона после взаимодействия равен сумме сдвигов фаз от попарного взаимодействия с каждым другим солитоном.

Для нелинейного уравнения Шрёдингера:

при значении параметра допустимы уединённые волны в виде:

где  — некоторые постоянные, связанные соотношениями:


Дромион — решение уравнения Дэви-Стюартсона[19].

Примечания

[править | править код]
  1. F. M. Trukhachev, N. V. Gerasimenko, M. M. Vasiliev, O. F. Petrov. Matter transport as fundamental property of acoustic solitons in plasma // Physics of Plasmas. — 2023-11-01. — Т. 30, вып. 11. — ISSN 1070-664X. — doi:10.1063/5.0172462.
  2. J.S.Russell «Report on Waves»: (Report of the fourteenth meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845), pp 311—390, Plates XLVII-LVII)
  3. J.S.Russell (1838), Report of the committee on waves, Report of the 7th Meeting of British Association for the Advancement of Science, John Murray, London, pp.417-496.
  4. Абловиц М., Сигур Х. Солитоны и метод обратной задачи. М.: Мир, 1987, с.12.
  5. N.J.Zabusky and M.D.Kruskal (1965), Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys.Rev.Lett., 15 pp. 240—243.Оригинал статьи (недоступная ссылка)
  6. Ф. М. Трухачев, М. М. Васильев, О. Ф. Петров. Солитонные токи (обзор) // Теплофизика высоких температур. — 2020. — Т. 58, вып. 4. — С. 563–583. — ISSN 0040-3644. — doi:10.31857/S0040364420040158.
  7. Alexander E. Dubinov, Xenia I. Lebedeva. Ambiplasma separation into matter and antimatter by a train of baryon-acoustic solitons in the problem of the baryon asymmetry of the Universe // Chaos, Solitons & Fractals. — 2021-11-01. — Т. 152. — С. 111391. — ISSN 0960-0779. — doi:10.1016/j.chaos.2021.111391.
  8. Дж. Л. Лэм. Введение в теорию солитонов. — М.: Мир, 1983. — 294 с.
  9. А. Т. Филиппов. Многоликий солитон. — С. 40—42.
  10. А. Т. Филиппов. Многоликий солитон. — С. 227—23.
  11. Солитон — статья из Физической энциклопедии
  12. Vladimir Belinski, Enric Verdaguer. Gravitational solitons. — Cambridge University Press, 2001. — 258 с. — (Cambridge monographs on mathematical physics). — ISBN 0521805864.
  13. Н. Н. Розанов. Мир лазерных солитонов // Природа. — 2007. — № 6. Архивировано 24 апреля 2013 года.
  14. А. Т. Филиппов. Многоликий солитон. — С. 241—246.
  15. А. И. Маймистов. Солитоны в нелинейной оптике // Квантовая электроника. — 2010. — Т. 40, № 9. — С. 756—781.
  16. Andrei I Maimistov. Solitons in nonlinear optics (англ.) // Quantum Electronics. — 2010. — Vol. 40. — P. 756. — doi:10.1070/QE2010v040n09ABEH014396. Архивировано 9 марта 2011 года.
  17. В стране и мире - Телеканал «Звезда». Дата обращения: 5 апреля 2015. Архивировано из оригинала 4 марта 2016 года.
  18. Сазонов С. В. Оптические солитоны в средах из двухуровневых атомов // Научно-технический вестник информационных технологий, механики и оптики. 2013. Т. 5. № 87. С. 1—22.
  19. Источник. Дата обращения: 17 мая 2018. Архивировано 31 декабря 2019 года.

Литература

[править | править код]
  • Абловиц М., Сигур Х. Солитоны и метод обратной задачи. — М.: Мир, 1987. — 480 с.
  • Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения. — М.: Мир, 1988. — 696 с.
  • Захаров В. Е., Манаков С. В., Новиков С. П., Питаевский Л. П. Теория солитонов: Метод обратной задачи. — М.: Наука, 1980. — 320 с.
  • Инфельд Э., Роуландс Дж. Нелинейные волны, солитоны и хаос. — М.: Физматлит, 2006. — 480 с.
  • Лэм Дж. Л. Введение в теорию солитонов. — М.: Мир, 1983. — 294 с.
  • Ньюэлл А. Солитоны в математике и физике. — М.: Мир, 1989. — 328 с.
  • Ахмедиев Н. Н., Анкевич А. Солитоны. Нелинейные импульсы и пучки. — М.: Физматлит, 2003. — 304 с. — ISBN 5-9221-0344-X.
  • Самарский А. А., Попов Ю. П. Разностные методы решения задач газовой динамики. — М.: URSS, 2004. — 424 с.
  • Уизем Дж. Линейные и нелинейные волны. — М.: Мир, 1977. — 624 с.
  • Филиппов А. Т. Многоликий солитон. — Изд. 2-е, перераб. и доп.. — М.: Наука, 1990. — 288 с.
  • Барьяхтар В. Г., Захаров В. Е., Черноусенко В. М. Интегрируемость и кинетические уравнения для солитонов. — Киев: Наукова думка, 1990. — 472 с. — 1000 экз. — ISBN 5-12-001120-9.
  • Yaroslav V. Kartashov, Boris A. Malomed, Lluis Torner. Solitons in nonlinear lattices (англ.) // Reviews of Modern Physics. — 2011. — Vol. 83. — P. 247–306.
  • Focus: Landmarks—Computer Simulations Led to Discovery of Solitons (англ.) // Physics. — 2013. — Vol. 6. — P. 15. — doi:10.1103/Physics.6.15.
{{bottomLinkPreText}} {{bottomLinkText}}
Солитон
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?