For faster navigation, this Iframe is preloading the Wikiwand page for Почти многоугольник.

Почти многоугольник

Материал из Википедии — свободной энциклопедии

Плотный почти многоугольник с диаметром d = 2

Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980[1]. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а связь между ними и двойственными полярными пространствами[2] была показана в 1980-х годах и начале 1990-х. Некоторые спорадические простые группы, например, группа Холла — Янко и группы Матьё, действуют как группы автоморфизмов на почти многоугольниках.

Определения

[править | править код]

Почти 2d-угольники — это структура инцидентности (), где — множество точек, — множество прямых, а отношение инцидентности, такое, что:

  • Максимальное расстояние между двумя точками (так называемый диаметр) равен d.
  • Для любой точки и любой прямой существуют единственная точка на , ближайшая к .

Заметим, что расстояние измеряется в терминах коллинеарного графа точек, т.е. графа, образованного из точек в качестве вершин, и пара вершин соединена ребром, если они инцидентны одной прямой. Мы можем также дать альтернативное определение в терминах теории графов. Почти 2d-угольник — это связный граф конечного диаметра d со свойством, что для любой вершины x и любой максимальной клики M существует единственная вершина x' в M, ближайшая к x. Максимальная клика такого графа соответствует прямым в определении структуры инцидентности. Почти 0-угольник (d = 0) — это единственная точка, в то время как почти 2-угольник (d = 1) — это просто одна прямая, т.е. полный граф. Почти квадрат (d = 2) — это то же самое, что и (возможно, вырожденный) обобщённый четырёхугольник. Можно показать, что любой обобщённый 2d-угольник является почти 2d-угольником, удовлетворяющим двум дополнительным условиям:

  • Любая точка инцидентна по меньшей мере двум прямым.
  • Для любых двух точек xy на расстоянии i < d существует единственная соседняя точка для y на расстоянии i − 1 от x.

Почти многоугольник называется плотным, если любая прямая инцидентна по меньшей мере трём точкам и если две точки на расстоянии два имеют по меньшей мере две общие соседние точки. Говорят, что многоугольник имеет порядок (st), если любая прямая инцидентна в точности s + 1 точкам и любая точка инцидентна в точности t + 1 прямым. Плотные почти многоугольники имеют богатую теорию и некоторые их классы (такие как тонкие плотные почти многоугольники) полностью классифицированы[3].

Подпространство X пространства P называется выпуклым, если любая точка на кратчайшем пути между двумя точками из X также содержится в X[4].

  • Все связные двудольные графы являются почти многоугольниками. Фактически, любой почти многоугольник, имеющий в точности две точки на прямую, должен быть связным двудольным графом.
  • Все конечные обобщённые многоугольники, за исключением проективных плоскостей.
  • Все двойственные полярные пространства[англ.].
  • Почти восьмиугольник Холла — Янко, известный также как почти восьмиугольник Коэна — Титса[5], связан с группой Холла — Янко. Он может быть построен путём выбора класса сопряжённости 315 центральных инволюций группы Холла — Янко в качестве точек и трёхэлементных подмножеств {x,y,xy} в качестве прямых, если x и y коммутируют.
  • Почти многоугольник M24, связанный с группой Матьё M24 и расширенным двоичным кодом Голея. Восьмиугольник строится из 759 октад (блоков) схемы Витта S(5, 8, 24), соответствующим кодам Голея, в качестве точек и троек трёх попарно не пересекающихся восьмёрок в качестве прямых[6]
  • Возьмём разбиение множества {1, 2,..., 2n+2} на n+1 подмножеств из 2 элементов в качестве точек и n – 1[7] подмножеств из двух элементов и одного подмножества из 4 элементов в качестве прямых. Точка инцидентна прямой тогда и только тогда, когда она (как разбиение) является измельчением прямой. Это даёт нам 2n-угольник с тремя точками на каждой прямой, которые обычно обозначаются как Hn. Полная группа автоморфизмов этого почти многоугольника — S2n+2[8].

Правильные почти многоугольники

[править | править код]

Конечный почти -угольник S называется правильным, если он имеет порядок и если существуют константы , такие, что для любых двух точек и на расстоянии существует в точности прямых, проходящих через и содержащих (обязательно в единственном числе) точек на расстоянии от . Оказывается, что правильные почти -угольники — это в точности те почти -угольники, точечные графы которых являются дистанционно-регулярными графами. Обобщённый -угольник порядка — это правильный почти -угольник с параметрами

Примечания

[править | править код]
  1. Shult, Yanushka, 1980.
  2. Cameron, 1982, с. 75-85.
  3. De Bruyn, 2006.
  4. De Bruyn, 2013, с. 1313.
  5. The near octagon on 315 points. Дата обращения: 21 августа 2017. Архивировано 29 июля 2021 года.
  6. Архивированная копия. Дата обращения: 21 августа 2017. Архивировано 31 августа 2021 года.
  7. В английской версии статьи здесь стоит n, но в статье де Брёйна стоит n-1.
  8. De Bruyn, 2013.

Литература

[править | править код]
  • Brouwer A.E., Cohen A. M., Wilbrink H. A., Hall J. J. Near polygons and Fischer spaces // Geom. Dedicata. — 1994. — Т. 49. — С. 349–368. — doi:10.1007/BF01264034.
  • Brouwer A.E., Cohen A.M. Distance Regular Graphs. — Berlin, New York: Springer-Verlag., 1989. — ISBN 3-540-50619-5.
  • Cameron Peter J. Dual polar spaces // Geom. Dedicata. — 1982. — Т. 12. — С. 75–85. — doi:10.1007/bf00147332.
  • Cameron Peter J. Projective and polar spaces. — Queen Mary and Westfield College School of Mathematical Sciences, 1991. — Т. 13. — (QMW Maths Notes).
  • De Bruyn Bart. Near Polygons. — Birkhäuser Verlag, 2006. — ISBN 3-7643-7552-3. — doi:10.1007/978-3-7643-7553-9.
  • De Clerck F., Van Maldeghem H. Some classes of rank 2 geometries // Handbook of Incidence Geometry. — Amsterdam: North-Holland, 1995. — С. 433–475.
  • Shult Ernest E. Points and Lines. — Springer, 2011. — (Universitext). — ISBN 978-3-642-15626-7. — doi:10.1007/978-3-642-15627-4.
  • Shult Ernest, Yanushka Arthur. Near n-gons and line systems // Geom. Dedicata. — 1980. — Т. 9. — С. 1–72. — doi:10.1007/BF00156473.
  • De Bruyn Bart. Isometric embeddings of the near polygons Hn and Gn into dualpolarspaces // Discrete Mathematics / Douglas B. West. — 2013. — Вып. 313. — С. 1313-1321. — ISSN 0012-365X.
Для улучшения этой статьи желательно: Проверить качество перевода с иностранного языка.Исправить статью согласно стилистическим правилам Википедии.После исправления проблемы исключите её из списка. Удалите шаблон, если устранены все недостатки.
{{bottomLinkPreText}} {{bottomLinkText}}
Почти многоугольник
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?