For faster navigation, this Iframe is preloading the Wikiwand page for Гиперболические функции.

Гиперболические функции

Материал из Википедии — свободной энциклопедии

Гиперболи́ческие фу́нкции — семейство элементарных функций, выражающихся через экспоненту и тесно связанных с тригонометрическими функциями.

Определение

[править | править код]

Гиперболические функции задаются следующими формулами:

  • гиперболический синус:

(в англоязычной литературе обозначается )

  • гиперболический косинус:

(в англоязычной литературе обозначается )

  • гиперболический тангенс:

(в англоязычной литературе обозначается )

  • гиперболический котангенс:

(в англоязычной литературе обозначается )

  • гиперболический секанс:

Гиперболический секанс иногда также обозначается как .

  • гиперболический косеканс:

Геометрическое определение

[править | править код]
Определение гиперболических функций через гиперболу
Параметризация гиперболического синуса (анимация).

Ввиду соотношения гиперболические функции дают параметрическое представление гиперболы (, ). При этом аргумент , где — площадь криволинейного треугольника , взятая со знаком «+», если сектор лежит выше оси , и «−» в противоположном случае. Очевидно, что и гиперболические функции определяются через этот параметр, например, уравнения гиперболического синуса в параметрической форме: , где — ордината точки гиперболы, соответствующей вершине криволинейного треугольника площадью . Это определение аналогично определению тригонометрических функций через единичную окружность, которое тоже можно построить подобным образом.

Связь с тригонометрическими функциями

[править | править код]

Гиперболические функции выражаются через тригонометрические функции от мнимого аргумента.

.

.

Функция Гудермана связывает тригонометрические функции и гиперболические функции без привлечения комплексных чисел.

Важные соотношения

[править | править код]
  1. Чётность/нечётность:
  2. Формулы сложения:
  3. Формулы двойного аргумента:
  4. Формулы кратных аргументов:
  5. Произведения:
  6. Суммы:
  7. Формулы понижения степени:
  8. Разложение на множители:
  9. Производные:
Функция Производная Примечание
  1. Интегралы:
    См. также: Список интегралов от гиперболических функций, Список интегралов от обратных гиперболических функций
  2. Представление через гиперболический тангенс половинного угла:

Неравенства

[править | править код]

Для всех выполняется:

Разложение в степенные ряды

[править | править код]
(Ряд Лорана)

Здесь числа Бернулли, числа Эйлера.

sh(x), ch(x), th(x), cth(x)
sh, ch и th
csch, sech и cth

Аналитические свойства

[править | править код]

Гиперболический синус и гиперболический косинус аналитичны во всей комплексной плоскости, за исключением существенно особой точки на бесконечности. Гиперболический тангенс аналитичен везде, кроме полюсов в точках , где — целое. Вычеты во всех этих полюсах равны единице. Гиперболический котангенс аналитичен везде, кроме точек , вычеты его в этих полюсах также равны единице.

Обратные гиперболические функции

[править | править код]

Иначе называются ареа-функциями: к названиям соответствующих гиперболических функций добавляется префикс «ареа-» — от лат. «area» — «площадь». Главные значения ареа-функций определяются следующими выражениями.

  • — обратный гиперболический синус, ареа-синус.
  • — обратный гиперболический косинус, ареа-косинус.
  • — обратный гиперболический тангенс, ареа-тангенс.
  • — обратный гиперболический котангенс, ареа-котангенс.
  • — обратный гиперболический секанс, ареа-секанс. Заметим, что решение также удовлетворяет уравнению , однако главные значения ареа-функций являются однозначными функциями.
  • — обратный гиперболический косеканс, ареа-косеканс.
arsh(x), arch(x), arth(x), arcth(x)

Связь между некоторыми обратными гиперболическими и обратными тригонометрическими функциями:

где iмнимая единица.

Эти функции имеют следующее разложение в ряд:

В зарубежной литературе обратные гиперболические функции часто обозначают посредством знака минус первой степени: например, пишут как (причём обозначает другую функцию — ), и т. д.

Первое появление гиперболических функций историки обнаружили в трудах английского математика Абрахама де Муавра (1707, 1722). Современное определение и обстоятельное их исследование выполнил Винченцо Риккати в 1757 году («Opusculorum», том I), он же предложил их обозначения: , . Риккати исходил из рассмотрения единичной гиперболы (см. рисунок в разделе #Определение).

Независимое открытие и дальнейшее исследование свойств гиперболических функций было проведено Иоганном Ламбертом (1768), который установил широкий параллелизм формул обычной и гиперболической тригонометрии. Н. И. Лобачевский впоследствии использовал этот параллелизм, пытаясь доказать непротиворечивость неевклидовой геометрии, в которой круговая тригонометрия заменяется на гиперболическую.

В обозначениях гиперболических функций утвердился некоторый разнобой. Например, в Энциклопедии Брокгауза и Эфрона используются обозначения , , в русскоязычной литературе закрепились обозначения , в англоязычной закрепились .

Применение

[править | править код]

Гиперболические функции часто встречаются при вычислении различных интегралов. Некоторые интегралы от рациональных функций и от функций, содержащих радикалы, довольно просто вычисляются с помощью замен переменных с использованием гиперболических функций.

Аналогично тому, как матрицы вида описывают повороты двумерного евклидова пространства, матрицы описывают повороты в простейшем двумерном пространстве Минковского. В связи с этим гиперболические функции часто встречаются в теории относительности.

Однородная бесконечно гибкая веревка или цепочка, свободно подвешенная за свои концы, приобретает форму графика функции (в связи с чем график гиперболического косинуса иногда называют цепной линией). Это обстоятельство используется при проектировании арок, поскольку форма арки в виде перевёрнутой цепной линии наиболее эффективно распределяет нагрузку.

Литература

[править | править код]
  • Бугров Я. С., Никольский С. М. Высшая математика. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. — Москва: Наука, 1985. — С. 464.
  • Шерватов В. Г. Гиперболические функции.. — Гостехиздат, 1954. — 58 с. — (Популярные лекции по математике). — 25 000 экз.
  • А. Р. Янпольский. Гиперболические функции. — Москва, 1960. — 195 с.
Для улучшения этой статьи желательно: Проставить сноски, внести более точные указания на источники.После исправления проблемы исключите её из списка. Удалите шаблон, если устранены все недостатки.
{{bottomLinkPreText}} {{bottomLinkText}}
Гиперболические функции
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?