For faster navigation, this Iframe is preloading the Wikiwand page for Аксиоматика Гильберта.

Аксиоматика Гильберта

Материал из Википедии — свободной энциклопедии

Аксиоматика Гильберта — система аксиом евклидовой геометрии. Разработана Гильбертом как более полная, нежели система аксиом Евклида.

Неопределяемые понятия

[править | править код]

Неопределяемыми понятиями в системе аксиом Гильберта являются: точка, прямая линия, плоскость. Есть также 3 элементарных отношения:

  • Лежать между, применимо к точкам;
  • Принадлежать, применимо к точкам и прямым, точкам и плоскостям или прямым и плоскостям;
  • Конгруэнтность (геометрическое равенство), применимо, например, к отрезкам, углам или треугольникам, и обозначается инфиксным символом .

Все точки, прямые и плоскости предполагаются различными, если не оговорено иное.

Система из 20 аксиом поделена на 5 групп:

  • аксиомы принадлежности:
    • планиметрические:
      1. Каковы бы ни были две точки и , существует прямая , которой принадлежат эти точки.
      2. Каковы бы ни были две различные точки и , существует не более одной прямой, которой принадлежат эти точки.
      3. Каждой прямой принадлежат, по крайней мере, две точки. Существуют, по крайней мере, три точки, не принадлежащие одной прямой.
    • cтереометрические:
      1. Каковы бы ни были три точки , и , не принадлежащие одной прямой, существует плоскость , которой принадлежат эти три точки. Каждой плоскости принадлежит хотя бы одна точка.
      2. Каковы бы ни были три точки , и , не принадлежащие одной прямой, существует не более одной плоскости, которой принадлежат эти три точки.
      3. Если две различные точки и , принадлежащие прямой , принадлежат некоторой плоскости , то каждая точка, принадлежащая прямой , принадлежит указанной плоскости.
      4. Если существует одна точка , принадлежащая двум плоскостям и , то существует, по крайней мере, ещё одна точка , принадлежащая обеим этим плоскостям.
      5. Существуют, по крайней мере, четыре точки, не принадлежащие одной плоскости.
  • аксиомы порядка:
    • линейные:
      1. Если точка прямой лежит между точками и той же прямой, то , и  — различные точки указанной прямой, причём лежит также и между и .
      2. Каковы бы ни были две различные точки и , на определяемой ими прямой существует, по крайней мере, одна точка такая, что лежит между и , и, по крайней мере, одна точка , такая, что лежит между и .
      3. Среди любых трёх точек, лежащих на одной прямой, всегда одна и только одна точка лежит между двумя другими.
    • планиметрическая:
      1. Аксиома Паша. Пусть , и  — три точки, не лежащие на одной прямой, и прямая в плоскости (), не проходящая ни через одну из точек , , . Если при этом прямая проходит через точку отрезка , то она непременно проходит через точку отрезка или точку отрезка .
  • аксиомы конгруэнтности:
    • линейные:
      1. Если и — две точки, лежащие на прямой , — точка на той же прямой или на другой прямой , то по данную от точки сторону прямой найдётся, и притом только одна, точка такая, что отрезок конгруэнтен отрезку . Каждый отрезок конгруэнтен отрезку .
      2. Если отрезки и конгруэнтны одному и тому же отрезку , то они конгруэнтны и между собой.
      3. Пусть и  — два отрезка прямой , не имеющие общих внутренних точек, и  — два отрезка той же прямой, или другой прямой , также не имеющие общих внутренних точек. Тогда если отрезок конгруэнтен отрезку , а отрезок конгруэнтен отрезку , то отрезок конгруэнтен отрезку .
    • планиметрические:
      1. Если даны угол в плоскости и луч в плоскости , тогда в плоскости существует ровно один луч по определённую сторону от (и соответственно второй луч по другую сторону от ), такой, что (и соответственно ). Следствие: Каждый угол конгруэнтен самому себе.
      2. Если для двух треугольников и имеют место конгруэнции: , , , то всегда имеют место и конгруэнции: , .
  • аксиома параллельности, для которой Гильберт выбрал неевклидову формулировку, а эквивалентную ей, но более простую аксиому Прокла:
    • планиметрические:
      1. Пусть — произвольная прямая, и  — точка вне её; тогда в плоскости, определяемой точкой и прямой , можно провести не более одной прямой, проходящей через и не пересекающей .
  • аксиомы непрерывности:
    • линейные:
      1. Аксиома Архимеда. Если даны отрезок и луч , то существует число и точек на таких, что , , совпадает с , и лежит между и .
      2. «Полнота линии». Добавление хотя бы одной дополнительной точки в прямую линию вызовет противоречие с одной из аксиом принадлежности, порядка, первыми двумя аксиомами конгруэнтности или аксиомой Архимеда.

21-я аксиома

[править | править код]

Гильберт изначально (1899) включил 21-ю аксиому:

«Любым четырём точкам на прямой можно присвоить имена и так, чтобы точка лежала между точками и , а также между и ; точка  — между и , а также между и ».

Элиаким Гастингс Мур и Роберт Ли Мур в 1902 году независимо доказали, что эта аксиома избыточна.

Полнота и непротиворечивость

[править | править код]

Как доказал Альфред Тарский (1951), аксиоматика Гильберта логически полна, то есть любое (формальное) высказывание о содержащихся в ней геометрических понятиях может быть доказано или опровергнуто. Она также непротиворечива, если непротиворечива арифметика[1][2].

Аксиоматическая схема евклидовой геометрии была опубликована Давидом Гильбертом в 1899 году в праздничном томе «Festschrift», посвящённом открытию в Гёттингене памятника Карлу Фридриху Гауссу и его другу физику Вильгельму Веберу. Ныне «Основания геометрии» изданы на многих языках мира, одно из двух изданий на русском языке указано внизу в ссылках.

Другие системы аксиом

[править | править код]

Создатели догильбертовских систем:

Родственные гильбертовой:

Более современные аксиоматики:

  • Д. Гильберт. Основания геометрии. Перевод с немецкого под редакцией А. В. Васильева. Л., «Сеятель», 1923—152 с.
  • Герман Вейль. Давид Гильберт и его математические труды.
  • Факультативный курс по математике. 7-9 / Сост. И. Л. Никольская. — М.: Просвещение, 1991. — С. 356-363. — 383 с. — ISBN 5-09-001287-3.

Примечания

[править | править код]
  1. Энциклопедия элементарной математики (в 5 томах). — М.: Физматгиз, 1963. — Т. 4. Геометрия. — С. 41—48. — 568 с.
  2. Гильберта система аксиом. Дата обращения: 10 сентября 2017. Архивировано 20 июля 2018 года.
{{bottomLinkPreText}} {{bottomLinkText}}
Аксиоматика Гильберта
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?