For faster navigation, this Iframe is preloading the Wikiwand page for 自由エネルギー.

自由エネルギー

統計力学


熱力学 · 気体分子運動論

自由エネルギー(じゆうエネルギー、: free energy)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となる[1][2]

自由エネルギーは1882年ヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギーHelmholtz free energy)と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギーGibbs free energy)と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G = F + pV の関係にあり、体積変化が系外に為す仕事 pV の分だけ異なる。

熱力学第二法則より、系は自由エネルギーが減少する方向に進行する。また、閉じた系における熱力学的平衡条件は自由エネルギーが極小値をとることである。

ヘルムホルツの自由エネルギー

[編集]

ヘルムホルツの自由エネルギー英語: Helmholtz free energy)は、等温条件の下で仕事として取り出し可能なエネルギーを表す示量性状態量である。なお、IUPACでは「自由」を付けずにヘルムホルツエネルギー英語: Helmholtz energy)とすることが推奨されている[3]。記号 FA で表されることが多い。

内部エネルギー U熱力学温度 Tエントロピー S として、ヘルムホルツエネルギーは

で定義される。

完全な熱力学関数

[編集]

熱力学温度 T体積 V物質量 N の関数として表されたヘルムホルツエネルギー F(T,V,N)完全な熱力学関数となる。 このように見たとき、定義式は完全な熱力学関数としての内部エネルギー U(S,V,N)S に関するルジャンドル変換

と見ることができる。

ヘルムホルツエネルギー F(T,V,N) の各変数による偏微分

で与えられる。 ここで、p圧力μi は成分 i化学ポテンシャルを表す。Nj は成分i以外の成分jの物質量である。 従って、全微分

となる。

系のスケール変換を考えると

の関係が得られる。

等温過程

[編集]

温度 Tex の環境にある系が、ある平衡状態から別の平衡状態へ変化する過程を考える。熱力学第二法則により、系が外部から受け取る熱 Q には上限が存在する。

この不等式とエネルギー保存則から、系が外部に為す仕事 W にも上限が存在する。

等温条件下では変化の前後で系の温度は外界の温度と等しく T=Tex なので、ヘルムホルツエネルギーの定義から

となり、不等式

が成り立つ。この場合の仕事 W は膨張仕事および非膨張仕事のすべてを含んでいる。

すなわち、温度 Tex の環境にある系が状態 X0 から X1 へと変化する間に外部に為す仕事 W には上限 Wmax が存在する。

この Wmax はヘルムホルツエネルギーを用いると

と表され、変化の前後でのヘルムホルツエネルギーの減少量が等温条件において取り出し可能な仕事量である。

等温条件下で外部に一切の仕事を行わない場合、とくに、等温等積で非膨張仕事も行わない場合は

となり、自発変化はヘルムホルツエネルギーが減少する方向へ進む。 また熱力学的平衡条件はヘルムホルツエネルギーが極小値をとることである。

統計力学との関係

[編集]

統計力学では、カノニカルアンサンブルと関係付けられる。 分配関数 Z(β) を用いて、

と表される。 これはミクロとマクロをつなぐボルツマンの関係

から導かれる。ここでln は自然対数であり、kボルツマン定数である。

ギブズの自由エネルギー

[編集]

ギブズ自由エネルギー英語: Gibbs free energy)は、熱力学電気化学などで用いられる、等温等圧条件下で非膨張の仕事として取り出し可能なエネルギーを表す示量性状態量である。非膨張の仕事の例としては電池反応による電気的な仕事があり、ギブズ自由エネルギーの減少量は等温等圧条件下で系から取り出し可能な電気エネルギーを表す。なお、IUPACではギブズエネルギーGibbs energy)という名称の使用を勧告している[4]。 通常は記号 G で表される。

等温等圧条件下ではギブズ自由エネルギーは自発的に減少しようとする。即ち、Gの変化が負であれば化学反応は自発的に起こる。さらに、ギブズエネルギーが極小の一定値を取ることは系が平衡状態にあることに等しい。

これは、ヘルムホルツの自由エネルギーに関する

等温等積条件下ではヘルムホルツの自由エネルギーは自発的に減少しようとする。即ち、Fの変化が負であれば化学反応は自発的に起こる。さらに、ヘルムホルツの自由エネルギーが極小の一定値を取ることは系が平衡状態にあることに等しい。

と対応している。

定義

[編集]

エンタルピー H熱力学温度 Tエントロピー S として、ギブズエネルギーは

で定義される[1]。あるいは、ヘルムホルツエネルギー F圧力 p体積 V を用いて

で定義されることもある。内部エネルギーU とすると、エンタルピーの定義 H=U+pV、或いはヘルムホルツエネルギーの定義 F=UTS より

が得られる。

完全な熱力学関数

[編集]

熱力学温度 T、圧力 p物質量 N を変数にもつ関数として表されたギブズエネルギー G(T,p,N)完全な熱力学関数である。このように見たとき、定義式は完全な熱力学関数としてのエンタルピー H(S,p,N)S に関するルジャンドル変換

と見ることができる。 ヘルムホルツエネルギーを用いた定義では、V に関するルジャンドル変換

と見ることができる。

ギブズエネルギー G(T,p,N) の各変数による偏微分

で与えられる。 ここで μi は成分 i化学ポテンシャルを表す。 従ってギブズエネルギー G(T,p,N)全微分

となる。この式は化学熱力学の基本方程式と呼ばれることがある[5]

系のスケール変換を考えると、

の関係が得られる。

等温等圧過程

[編集]

温度 Tex、圧力 pex の環境にある系の状態変化を考える。 等温条件下では定義から

が導かれる。 また、熱力学第二法則から

であるが、非膨張仕事がない等圧条件下では系が得た熱がエンタルピーの変化と等しいので

となる。これらを合わせると、非膨張仕事がないときには、等温等圧条件から

が得られる。 等温等圧の条件下では、非膨張仕事がなければ自発変化はギブズエネルギーが減少する方向へ進む。また熱力学的平衡条件はギブズエネルギーが極小値をとることである。

平衡定数との関係

[編集]

定圧定温条件での化学反応における標準反応ギブズエネルギーは標準反応エンタルピーおよび標準反応エントロピーと以下の関係がある。

標準反応ギブズエネルギーと平衡定数Kとの間には以下のような関係がある。ここで R気体定数である。

標準環境温度(25 ℃ = 298.15 K)においては以下のようになる。

また標準電極電位との関係は以下の通りである。ここで n は電池反応の半反応式における電子の化学量論係数、 Fファラデー定数である。

電池ではギブズエネルギー変化が負の値を取る向きに起電力が発生する。

脚注

[編集]

参考文献

[編集]
  • Raymond Chang『生命科学系のための物理化学』岩澤康裕、北川 禎三、濱口 宏夫 訳、東京化学同人、2006年。ISBN 4807906453 
  • P. W. Atkins『物理化学(上) 第6版』千葉秀昭、中村亘夫 訳、東京化学同人、2001年。ISBN 4-8079-0529-5 
  • Daveid W. Ball『物理化学(上)』田中一義、阿竹徹 他、化学同人、2004年。ISBN 4-7598-0977-5 

関連項目

[編集]

外部リンク

[編集]
{{bottomLinkPreText}} {{bottomLinkText}}
自由エネルギー
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?