For faster navigation, this Iframe is preloading the Wikiwand page for Matrice ortogonale.

Matrice ortogonale

Da Wikipedia, l'enciclopedia libera.

In matematica, e più precisamente in algebra lineare, una matrice ortogonale è una matrice invertibile tale che la sua trasposta coincide con la sua inversa.

Nel campo complesso, una matrice invertibile la cui trasposta coniugata coincide con l'inversa è detta matrice unitaria.

Data una matrice invertibile , indicando con la sua trasposta si definisce ortogonale se:

laddove è la matrice identità, ovvero la trasposta è l'inversa.

In modo equivalente, una matrice ortogonale è una matrice che rappresenta una isometria dello spazio euclideo, oppure è una matrice di cambiamento di base fra due basi ortonormali.

Si può ricavare che il numero di parametri indipendenti in una matrice ortogonale di dimensione è .

Basi ortonormali

[modifica | modifica wikitesto]

Una matrice quadrata è ortogonale se e solo se le sue colonne formano una base ortonormale dello spazio euclideo con l'ordinario prodotto scalare. Questa proprietà è semplicemente la rilettura della relazione .

Rileggendo similmente la relazione , si ricava l'enunciato duale del precedente: una matrice quadrata reale è ortogonale se e solo se le sue righe formano una base ortonormale di .

Geometricamente, le matrici ortogonali descrivono le trasformazioni lineari di che sono anche isometrie. Queste preservano il prodotto scalare dello spazio, e quindi gli angoli e le lunghezze. Ad esempio, le rotazioni e le riflessioni sono isometrie.

Viceversa, se è un qualsiasi spazio vettoriale di dimensione finita dotato di un prodotto scalare definito positivo, e è un'applicazione lineare con:

per tutti gli elementi , di , allora è una isometria ed è rappresentata in ogni base ortonormale di da una matrice ortogonale.

In uno spazio euclideo di dimensione 2 e 3, ogni matrice ortogonale esprime una rotazione intorno ad un punto o un asse, o una riflessione, o una composizione di queste due trasformazioni.

Gruppo ortogonale

[modifica | modifica wikitesto]

Dalla definizione segue subito che l'inversa di ogni matrice ortogonale, cioè la sua trasposta, è anch'essa ortogonale.

Analogamente, il prodotto di due matrici ortogonali è una matrice ortogonale. Infatti:

Questo dimostra che l'insieme delle matrici ortogonali forma un gruppo rispetto all'operazione "moltiplicazione tra matrici/composizione di funzioni lineari", il gruppo ortogonale, che è un gruppo di Lie e viene indicato con .

La sua dimensione è . Intuitivamente, la dimensione è calcolata nel modo seguente: gli numeri di una matrice ortogonale sono vincolati dalle uguaglianze della definizione, ciascuna delle quali è caratterizzata da una coppia di indici che vanno da 1 a , ma l'equazione relativa a con equivale a quella relativa a e quindi ci sono solo equazioni indipendenti, e quindi gradi di libertà.

Matrice ortogonale speciale

[modifica | modifica wikitesto]

Il determinante di ogni matrice ortogonale è o . Questo si può dimostrare come segue:

Una matrice ortogonale con determinante positivo si dice matrice ortogonale speciale.

L'insieme di tutte le matrici ortogonali speciali formano un sottogruppo di di indice 2, chiamato gruppo ortogonale speciale e denotato .

Autovalori e decomposizioni

[modifica | modifica wikitesto]

Tutti gli autovalori di una matrice ortogonale, anche quelli complessi, hanno valore assoluto . Autospazi relativi a differenti autovalori sono ortogonali tra loro.

Decomposizioni lungo piani

[modifica | modifica wikitesto]

Data una matrice ortogonale , esiste una matrice ortogonale , tale che:

dove denotano matrici di rotazione . Intuitivamente, questo risultato dice che ogni matrice ortogonale descrive una combinazione di rotazioni e riflessioni su piani ortogonali. Le matrici corrispondono alle coppie di autovalori complessi coniugati di .

Decomposizione QR

[modifica | modifica wikitesto]

Se è una arbitraria matrice di tipo di rango (cioè ), si può sempre scrivere:

dove è una matrice ortogonale di tipo e è una matrice triangolare superiore di tipo con valori positivi sulla diagonale principale. La decomposizione QR può essere dimostrata applicando l'ortogonalizzazione di Gram-Schmidt alle colonne di .

Questa decomposizione risulta utile per risolvere numericamente i sistemi di equazioni lineari e i problemi di minimi quadrati.

Matrici ortogonali e rappresentazione delle algebre di Clifford

[modifica | modifica wikitesto]

Alle matrici ortogonali si può attribuire un secondo significato geometrico che si collega alle rappresentazione matriciale delle algebre di Clifford. Ad esempio, i vettori della base canonica di sono e e un generico vettore di questo piano cartesiano si può scrivere:

La matrice ortogonale:

rappresenta la riflessione rispetto alla bisettrice , poiché scambia le due componenti di ogni vettore piano:

La matrice ortogonale:

rappresenta invece la riflessione rispetto all'asse , poiché il punto ha come immagine :

Per i due prodotti di queste matrici si trova:

Si tratta delle due rotazioni nel piano di e di , rotazioni opposte: quindi le due matrici anticommutano. In formule:

Si considerino ora ed come vettori di base del piano bidimensionale delle loro combinazioni lineari:

sfruttando la composizione:

si trova:

Per il quadrato di una di queste entità in particolare:

Si può quindi definire come prodotto interno di e la precedente composizione, a meno della matrice unità . Questo è lecito in quanto chiaramente si tratta di una forma bilineare simmetrica positiva. Il prodotto interno di una entità matriciale e vettoriale con sé stessa fornisce il quadrato della sua norma.

Dato che le entità base anticommutano si vede che:

Le entità ed sono ortogonali secondo entrambe le loro interpretazioni: sono matrici ortogonali e rappresentano vettori di base ortogonali in quanto matrici anticommutative.

Matrici ortogonali trigonometriche

[modifica | modifica wikitesto]

Matrice ortogonale 2×2

[modifica | modifica wikitesto]

Matrice ortogonale 3×3

[modifica | modifica wikitesto]

Queste matrici sono anche matrici di rotazione di coordinate. Utilizzando le equazioni di rotazione di uno spazio n-dimensionale si possono costruire matrici ortogonali trigonometriche di dimensione .

  • (EN) A.I. Mal'tsev, Foundations of linear algebra , Freeman (1963) (Translated from Russian)
  • (EN) W. Noll, Finite dimensional spaces , M. Nijhoff (1987) pp. Sect. 43
  • (EN) H.W. Turnball, A.C. Aitken, An introduction to the theory of canonical matrices , Blackie & Son (1932)
  • (EN) Persi Diaconis, Mehrdad Shahshahani. The subgroup algorithm for generating uniform random variables. Prob. in Eng. and Info. Sci., vol. 1, 15–32, 1987. ISSN 0269-9648.
  • (EN) Augustin A. Dubrulle. Frobenius Iteration for the Matrix Polar Decomposition. HP Labs Technical Report HPL-94-117. December 16, 1994. [1] Archiviato il 21 marzo 2021 in Internet Archive.
  • (EN) Gene H. Golub, Charles F. Van Loan. Matrix Computations, 3/e. Johns Hopkins University Press, Baltimore, 1996. ISBN 978-0-8018-5414-9.
  • (EN) Nicholas Higham. Computing the Polar Decomposition—with Applications. SIAM Journal on Scientific and Statistical Computing, 7(4):1160–1174, 1986. ISSN 0196-5204. [2] Archiviato il 7 ottobre 2007 in Internet Archive.

Voci correlate

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
{{bottomLinkPreText}} {{bottomLinkText}}
Matrice ortogonale
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?