For faster navigation, this Iframe is preloading the Wikiwand page for Matrice di trasformazione.

Matrice di trasformazione

Da Wikipedia, l'enciclopedia libera.

In matematica, e più precisamente in algebra lineare, la matrice di trasformazione, anche detta matrice associata ad una trasformazione o matrice rappresentativa dell'operatore rispetto alle sue basi, è la matrice che rappresenta una trasformazione lineare fra spazi vettoriali rispetto ad una base per ciascuno degli spazi.

Fissata una base per il dominio e una per il codominio, ogni trasformazione lineare è descrivibile tramite una matrice nel modo seguente:

dove è il vettore colonna delle coordinate di un punto del dominio rispetto alla base del dominio e è il vettore colonna delle coordinate dell'immagine, mentre il prodotto è il prodotto righe per colonne.

Siano e due spazi vettoriali su un campo di dimensione finita, e una applicazione lineare. Siano:

due basi rispettivamente per e .

La matrice associata a nelle basi e è la matrice avente nella -esima colonna le coordinate del vettore rispetto alla base :[1]

dove la colonna è l'immagine dell'-esimo vettore della base di partenza scritta attraverso le coordinate rispetto alla base di arrivo .[2]

Gli elementi di sono quindi tali che:

e si ha:

In modo equivalente si può scrivere:

Dove le parentesi quadre indicano le coordinate rispetto alla base relativa.

La corrispondenza biunivoca definita fra applicazioni lineari e matrici è un isomorfismo fra lo spazio vettoriale delle applicazioni lineari da in e lo spazio delle matrici :[3]

Tale isomorfismo dipende dalle basi scelte per entrambi gli spazi.

Composizione di applicazioni lineari

[modifica | modifica wikitesto]

Nella rappresentazione di applicazioni attraverso le matrici la composizione di funzioni si traduce nell'usuale prodotto fra matrici. Si considerino le applicazioni lineari:

Siano e le rispettive matrici rappresentative rispetto a tre basi dei relativi spazi. Si ha:

ovvero la matrice associata alla composizione è il prodotto delle matrici associate a e a .[4]

Dette , basi rispettivamente di e si ha:

Endomorfismo rappresentato da una matrice. Il determinante della matrice è -1: questo implica che l'endomorfismo è invertibile e inverte l'orientazione del piano. L'angolo orientato infatti viene mandato nell'angolo con orientazione opposta.

In presenza di un endomorfismo è naturale scegliere la stessa base in partenza ed in arrivo. Sia tale base e sia la matrice associata a rispetto alla base . Si ha allora:[3]

In particolare, è una matrice quadrata .

Molte proprietà dell'endomorfismo possono essere lette attraverso la matrice rappresentativa:

  • è l'identità se e solo se è la matrice identica.
  • è la funzione costantemente nulla se e solo se è la matrice nulla.
  • è biunivoca se e solo se è invertibile, ovvero se ha determinante diverso da zero.
  • preserva l'orientazione dello spazio se , mentre la inverte se

Altre proprietà più complesse delle applicazioni lineari, come la diagonalizzabilità, possono essere più facilmente studiate attraverso la rappresentazione matriciale.

Matrici simili

[modifica | modifica wikitesto]

Due matrici quadrate e sono simili quando esiste una matrice invertibile tale che:[5][6]

In particolare, la matrice identità e la matrice nulla sono simili solo a se stesse.

Le matrici simili rivestono notevole importanza, dal momento che due matrici simili rappresentano lo stesso endomorfismo rispetto a due basi diverse.[7] Se e sono due basi dello spazio vettoriale , dato un endomorfismo su si ha:

La matrice è la matrice di cambiamento di base dalla base alla base .

  • Nel piano cartesiano, indicando con un punto generico, la trasformazione lineare viene rappresentata rispetto ad una qualsiasi base dalla matrice identità di ordine 2. Una tale trasformazione è conosciuta anche come funzione identità.
  • Nel piano cartesiano, sia la riflessione rispetto alla bisettrice del I e III quadrante. Le matrici associate a usando rispettivamente la base canonica e la base sono:
  • Nel piano la rotazione di un angolo θ in senso antiorario intorno all'origine è lineare e definita da e . In forma matriciale si esprime con:
Analogamente per una rotazione in senso orario attorno all'origine la funzione è definita da e ed in forma matriciale corrisponde alla trasposta della precedente matrice, ovvero:
  • La funzione dallo spazio dei polinomi di grado al più due in sé, che associa ad un polinomio la sua derivata è lineare. La matrice associata rispetto alla base è:
  1. ^ S. Lang, Pag. 106.
  2. ^ Hoffman, Kunze, Pag. 87.
  3. ^ a b Hoffman, Kunze, Pag. 88.
  4. ^ Hoffman, Kunze, Pag. 90.
  5. ^ S. Lang, Pag. 115.
  6. ^ Hoffman, Kunze, Pag. 94.
  7. ^ Hoffman, Kunze, Pag. 92.
  • Serge Lang, Algebra lineare, Torino, Bollati Boringhieri, 1992, ISBN 88-339-5035-2.
  • (EN) Kenneth Hoffman, Ray Kunze, Linear Algebra, 2ª ed., Englewood Cliffs, New Jersey, Prentice - Hall, inc., 1971, ISBN 0-13-536821-9.
  • F. Odetti, M. Raimondo, Elementi di Algebra Lineare e Geometria Analitica, ECIG, 1992, ISBN 88-7545-717-4.

Voci correlate

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
{{bottomLinkPreText}} {{bottomLinkText}}
Matrice di trasformazione
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?