For faster navigation, this Iframe is preloading the Wikiwand page for Téglalapszámok.

Téglalapszámok

A számelméletben a téglalapszámok olyan figurális számok, melyek felírhatók két, egymást követő nemnegatív egész szám szorzataként, tehát n(n + 1) alakban.[1] Már Arisztotelész is tanulmányozta őket. A téglalapszámok általánosíthatók az n(n + k) alakú számokra.

Az első néhány téglalapszám:

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462 … (A002378 sorozat az OEIS-ben).

Figurális számokként

[szerkesztés]

Arisztotelész metafizikájában a téglalapszámokat más figurális számokkal, a háromszögszámokkal és négyzetszámokkal együtt tanulmányozták,[2] felfedezésük még korábbra, a püthagoreusokhoz köthető.[3] A sokszögszámok mintájára:

* * * * *
* * *
* * * *
* * * *
* * * *
* * * * *
* * * * *
* * * * *
* * * * *
1×2 2×3 3×4 4×5

Az n-edik téglalapszám épp kétszerese az n-edik háromszögszámnak[1][2] és n-nel haladja meg az n-edik négyzetszámot, ami az alternatív n2 + n képletükből is világos. Az n-edik téglalapszám éppen a páratlan négyzetszám (2n + 1)2 és az (n+1)-edik középpontos hatszögszám közötti különbség.

Első n téglalapszám összege

[szerkesztés]
A téglalapszámok egy részösszegének vizuális ábrázolása
A téglalapszámok egy részösszegének vizuális ábrázolása

A téglalapszámok figurális mivoltuk miatt a legegyszerűbben téglalapokként ábrázolhatóak, ahogyan az ábrán látható. Az első n téglalapszám összegét meghatározhatjuk, ha a nagy téglalap területéből kivonjuk a nem kellő területeket.

A nagy téglalap területe .

Megfigyelhető, hogy a felesleges részek területei soronként az első 1, 2, ..., n-1 pozitív szám összegei, azaz .

Továbbá látható, hogy a felesleges részek pontosan az első n-1 téglalapszám összegének a fele.

Ekkor ha az első n téglalapszám összegét adja meg, akkor .

Felhasználva, hogy és az algebra szabályait segítségül hívva:

Azaz

Reciprokösszegek

[szerkesztés]

Az első n pozitív téglalapszám reciprokösszege a következőképpen alakul:

Ebből kifolyólag a pozitív téglalapszámok reciprokösszege 1:[4]

Általánosítás

[szerkesztés]

A téglalapszámok általánosíthatóak alakúra, ahol . Ebben az esetben az első n pozitív téglalapszám reciprokösszege a következő:

ahol a az első n pozitív egész szám reciprokainak összegét, azaz az n-dik harmonikus számot adja meg.

Ezen összeg esetben:

Következtetésképpen megállapíthatjuk, hogy a k különbségű pozitív téglalapszámok reciprokainak összege , ahol a k-dik harmonikus szám.

További tulajdonságaik

[szerkesztés]

Az n-edik téglalapszám megegyezik az első n páros egész szám összegével.[2] Ebből következik az is, hogy az összes téglalapszám páros, és közülük egyedül a 2 prímszám. Szintén a 2 az egyetlen Fibonacci-téglalapszám és az egyetlen téglalap Lucas-szám.[5][6]

A négyzetes mátrix átlón kívüli elemeinek száma mindig téglalapszám.[7]

A tény, hogy az egymást követő egészek mindig relatív prímek, a téglalapszámok pedig két egymást követő egész szorzatai, néhány új tulajdonsághoz vezetnek. A téglalapszám minden prímtényezője az őt alkotó tényezők közül pontosan az egyikben fordul elő. Tehát egy téglalapszám csakkor négyzetmentes, ha n és n + 1 is négyzetmentesek. A téglalapszámok különböző prímtényezőinek száma megegyezik az n és n + 1 különböző prímtényezői számának összegével.

További tulajdonsága a téglalapszámoknak, hogy az n-nél 0,5-del nagyobb szám négyzete pont az n-edik téglalapszámnál 0,25-dal nagyobb. Például: 7,52 = 56,25. Ezért az 5-re végződő egész négyzetszámok négyzete 25-re végződik úgy, hogy az azt megelőző számjegyek téglalapszámot alkotnak.

Még egy másik tulajdonságuk, hogy bármelyik n alapú számrendszerben az n-edik, vagyis a számrendszer alapszámával megegyező sorszámú téglalapszám 110 alakban írható fel. Például a nyolcas számrendszerben az 1108 szám 72-t jelent, amely pont a 8. téglalapszám. A tízes számrendszerben épp a tizedik téglalapszám írható fel 110 (száztíz) alakban. Ennek oka ugyanaz, ami miatt a n2 + n is az egyik kiszámítási képlet alternatívája, vagyis az n-edik téglalapszám az n szám (számrendszer alapszáma) első két hatványának összege.

További információk

[szerkesztés]

Fordítás

[szerkesztés]
  • Ez a szócikk részben vagy egészben a Pronic number című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.

Jegyzetek

[szerkesztés]
  1. a b Conway, J. H. & Guy, R. K. (1996), The Book of Numbers, New York: Copernicus, Figure 2.15, p. 34.
  2. a b c Knorr, Wilbur Richard (1975), The evolution of the Euclidean elements, Dordrecht-Boston, Mass.: D. Reidel Publishing Co., pp. 144–150, ISBN 90-277-0509-7, <https://books.google.com/books?id=_1H6BwAAQBAJ&pg=PA144>.
  3. Ben-Menahem, Ari (2009), Historical Encyclopedia of Natural and Mathematical Sciences, Volume 1, Springer reference, Springer-Verlag, p. 161, ISBN 9783540688310, <https://books.google.com/books?id=9tUrarQYhKMC&pg=PA161>.
  4. Marc Frantz: The Telescoping Series in Perspective. In Caren L. Diefenderfer – Roger B. Nelsen: The Calculus Collection: A Resource for AP and Beyond. (angolul) Washington, D.C.: Mathematical Association of America. 2009. 467–468. o. = Classroom Resource Materials, ISBN 9780883857618 Hozzáférés: 2018. május 3.  .
  5. McDaniel, Wayne L. (1998), "Pronic Lucas numbers", Fibonacci Quarterly 36 (1): 60–62, <http://www.mathstat.dal.ca/FQ/Scanned/36-1/mcdaniel2.pdf>. Hozzáférés ideje: 2016-02-05.
  6. McDaniel, Wayne L. (1998), "Pronic Fibonacci numbers", Fibonacci Quarterly 36 (1): 56–59, <http://www.fq.math.ca/Scanned/36-1/mcdaniel1.pdf>.
  7. Rummel, Rudolf J. (1988), Applied Factor Analysis, Northwestern University Press, p. 319, ISBN 9780810108240, <https://books.google.com/books?id=g_eNa_XzyEIC&pg=PA319>.
{{bottomLinkPreText}} {{bottomLinkText}}
Téglalapszámok
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?