For faster navigation, this Iframe is preloading the Wikiwand page for Théorème de la dimension pour les espaces vectoriels.

Théorème de la dimension pour les espaces vectoriels

En mathématiques, le théorème de la dimension pour les espaces vectoriels énonce que deux bases quelconques d'un même espace vectoriel ont même cardinalité[1],[2],[3]. Joint au théorème de la base incomplète qui assure l'existence de bases, il permet de définir la dimension d'un espace vectoriel comme le cardinal (fini ou infini) commun à toutes ses bases.

Théorème — Dans un espace vectoriel E, le cardinal de toute partie libre est inférieur ou égal au cardinal de toute partie génératrice de E.

(Donc par symétrie, deux bases quelconques ont même cardinal.)

Démonstration

[modifier | modifier le code]

Soient L libre et G génératrice de E, montrons que |L| ≤ |G|.

Cas G finie

[modifier | modifier le code]

Notons n = |G|. D'après le lemme de Steinitz, pour toute partie finie de L de cardinal m, on a m n. Par conséquent, L elle-même est (finie et) de cardinal inférieur ou égal à n.

Cas G infinie

[modifier | modifier le code]

Pour tout ℓ ∈ L, choisissons une partie finie f(ℓ) de G telle que ℓ appartienne au sous-espace engendré par f(ℓ). Pour tout K appartenant à l'ensemble Fin(G) des parties finies de G, on a (d'après le cas fini ci-dessus) |f−1({K})| ≤ |K| < 0 donc (d'après les propriétés générales des cardinaux)

N.B. : cette démonstration pour le cas infini utilise l'axiome du choix, mais il existe des démonstrations n'utilisant que le lemme des ultrafiltres[4].

Notes et références

[modifier | modifier le code]
  1. N. Bourbaki, Algèbre, chap. II, p. A-II-96, Théorème 3.
  2. (en) Serge Lang, Algebra, 1965 [détail des éditions], p. 86, Theorem 3.
  3. (en) Joseph J. Rotman (en), Advanced Modern Algebra, AMS, coll. « Graduate Studies in Mathematics » (no 114), , 2e éd. (ISBN 978-0-8218-8420-1, lire en ligne), p. 324-325.
  4. (en) James D. Halpern, « Bases in vector spaces and the axiom of choice », Proc. Amer. Math. Soc., vol. 17,‎ , p. 670-673 (lire en ligne).
{{bottomLinkPreText}} {{bottomLinkText}}
Théorème de la dimension pour les espaces vectoriels
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?