For faster navigation, this Iframe is preloading the Wikiwand page for Loop group.

Loop group

In mathematics, a loop group (not to be confused with a loop) is a group of loops in a topological group G with multiplication defined pointwise.

Definition

[edit]

In its most general form a loop group is a group of continuous mappings from a manifold M to a topological group G.

More specifically,[1] let M = S1, the circle in the complex plane, and let LG denote the space of continuous maps S1G, i.e.

equipped with the compact-open topology. An element of LG is called a loop in G. Pointwise multiplication of such loops gives LG the structure of a topological group. Parametrize S1 with θ,

and define multiplication in LG by

Associativity follows from associativity in G. The inverse is given by

and the identity by

The space LG is called the free loop group on G. A loop group is any subgroup of the free loop group LG.

Examples

[edit]

An important example of a loop group is the group

of based loops on G. It is defined to be the kernel of the evaluation map

,

and hence is a closed normal subgroup of LG. (Here, e1 is the map that sends a loop to its value at .) Note that we may embed G into LG as the subgroup of constant loops. Consequently, we arrive at a split exact sequence

.

The space LG splits as a semi-direct product,

.

We may also think of ΩG as the loop space on G. From this point of view, ΩG is an H-space with respect to concatenation of loops. On the face of it, this seems to provide ΩG with two very different product maps. However, it can be shown that concatenation and pointwise multiplication are homotopic. Thus, in terms of the homotopy theory of ΩG, these maps are interchangeable.

Loop groups were used to explain the phenomenon of Bäcklund transforms in soliton equations by Chuu-Lian Terng and Karen Uhlenbeck.[2]

Notes

[edit]
  1. ^ Bäuerle & de Kerf 1997
  2. ^ Geometry of Solitons by Chuu-Lian Terng and Karen Uhlenbeck

References

[edit]
  • Bäuerle, G.G.A; de Kerf, E.A. (1997). A. van Groesen; E.M. de Jager; A.P.E. Ten Kroode (eds.). Finite and infinite dimensional Lie algebras and their application in physics. Studies in mathematical physics. Vol. 7. North-Holland. ISBN 978-0-444-82836-1 – via ScienceDirect.
  • Pressley, Andrew; Segal, Graeme (1986), Loop groups, Oxford Mathematical Monographs. Oxford Science Publications, New York: Oxford University Press, ISBN 978-0-19-853535-5, MR 0900587

See also

[edit]
{{bottomLinkPreText}} {{bottomLinkText}}
Loop group
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?