For faster navigation, this Iframe is preloading the Wikiwand page for Lusternik–Schnirelmann-Kategorie.

Lusternik–Schnirelmann-Kategorie

aus Wikipedia, der freien Enzyklopädie

In der Mathematik, ist die Lusternik–Schnirelmann-Kategorie (oder LS-Kategorie) eines topologischen Raumes eine homotopieinvariante natürliche Zahl (also keine Kategorie in mathematischem Sinne), also identisch für homotopieäquivalente (und daher insbesondere homöomorphe) Räume. Sie kann daher dafür benutzt werden, um zu untersuchen, ob topologische Räume homotopieäquivalent sind.

Die Lusternik–Schnirelmann-Kategorie eines topologischen Raumes ist die kleinste natürliche Zahl , für die:

  • eine offene Überdeckung von existiert,
  • für jedes die Inklusion nullhomotop ist.
  • Ein topologischer Raum ist genau dann zusammenziehbar, wenn für dessen Lusternik–Schnirelmann-Kategorie gilt.
  • Die Lusternik–Schnirelmann-Kategorie hängt mit der topologischen Komplexität zusammen über[1]:
  • Für wegzusammenhängende und parakompakte topologische Räume gilt:[2]
  • Es gilt , und .[3]
  • Die Lusternik–Schnirelmann-Kategorie der Sphäre ist , da diese von einer zusammenziehbaren Nord- und Südhalbkugel überdeckt wird. Da das Möbiusband homotopieäquivalent zu ist, hat dieses ebenfalls die Lusternik–Schnirelmann-Kategorie .

Oft wird eine andere Definition als die obige für die Lusternik–Schnirelmann-Kategorie benutzt, die eine Zahl kleiner ist.

Im Allgemeinen ist die Berechnung der Invariante nicht einfach, die ursprünglich von Lazar Lusternik und Lev Schnirelmann in Verbindung mit Variationsproblemen eingeführt wurde. Es gibt Verbindungen der Invariante mit der algebraischen Topologie, insbesondere der Cup-Länge. In der modernen Definition ist die Cup-Länge dabei eine untere Schranke für die LS-Kategorie.

Die ursprüngliche Definition bezog sich zunächst nur auf Mannigfaltigkeiten und gab die untere Schranke an kritischen Punkten an, die eine reelle Funktion auf dieser hat. Das kann mit dem entsprechenden Resultat in Morse-Theorie vergleichen werden, in welcher die Summe aller Betti-Zahlen eine untere Schranke für die kritischen Punkte einer Morsefunktion ist.

Es gibt Verallgemeinerungen der Invariante Im Bezug auf verschiedene andere mathematische Konzepte wie Gruppenwirkungen, Blätterungen oder Simplizialkomplexe.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. M. Farber: Topological complexity of motion planning. In: Discrete & Computational Geometry, S. 211–221 (englisch).
  2. I. M. James: On category, in the sense of Lusternik-Schnirelman. In; Topology. Band 17, 1978, S. 331–348. doi:10.1016/0040-9383(78)90002-2.
  3. Alexander Dranishnikov, Rustam Sadykov (2017). On LS-category and topological complexity of connected sum. arxiv:1707.07088
{{bottomLinkPreText}} {{bottomLinkText}}
Lusternik–Schnirelmann-Kategorie
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?