For faster navigation, this Iframe is preloading the Wikiwand page for 超橢圓.

超橢圓

n = 0.5,a = b = 1的超橢圓
n = 1.5,a = b = 1的超橢圓
n = 4,a = b = 1的超橢圓,也稱為方圓形(Squircle)

超橢圓(英語:superellipse)也稱為拉梅曲線Lamé curve),是在笛卡儿坐标系下滿足以下方程式的點的集合:

其中nab為正數。

上述方程式的解會是一個在−ax ≤ +a及−b ≤ y ≤ +b長方形內的封閉曲線,參數ab稱為曲線的半直徑semi-diameters)。

n在0和1之間時,超橢圓的圖形類似一個曲線的四角星,四邊的曲線往內凹。

n為1時,超橢圓的圖形為一菱形,四個頂點為(±a, 0)及(0, ±b)。n在1和2之間時,超橢圓的圖形類似菱形,四個頂點位置相同,但四邊是往外的曲線,越接近頂點,曲線的曲率越大,頂點的曲率趨近無限大。

n為2時,超橢圓的圖形即為橢圓(若a = b時則為一個圓形)。當n大於2時,超橢圓的圖形看似四角有圓角英语Chamfer長方形,曲線的曲率在(±a, 0)及(0, ±b)四點為0。n為4的超橢圓也稱為方圓形

n < 2的超橢圓也稱為次椭圆hypoellipse),n > 2的超橢圓則稱為過椭圆hyperellipse)。

n ≥ 1,且a = b=1時的超橢圓是二維Lp空间下的單位圓,n即為其p-範數。

超橢圓的極點為(±a, 0)及(0, ±b),而其四個「角」為(±sa, ±sb),其中

數學性質

n為一個非零的有理數p/q(最簡分數形式),則超橢圓為一平面代數曲線。若n為正數,其曲線次數為pq,若n為負數,其曲線次數為2pq。若ab均為1且n為偶數,則此超橢圓為一n次的費馬曲線英语Fermat curve,此時超橢圓沒有奇點,但一般而言超橢圓中會有有奇點。

超橢圓的動畫

超橢圓的參數方程如下:

超橢圓內的面積可以用Γ函数Γ(x)來表示:

=

垂足曲線較容易計算,而以下曲線的垂足曲線

可以用極坐標方式來表示[1]

延伸

廣義的超橢圓,m ≠ n.

超橢圓可以延伸為以下的形式:

其中的不是表示角度,只是方程式的一個參數。

歷史

超橢圓在笛卡兒坐標系下的表示式是由1795年出生的法國數學家加布里埃爾·拉梅,由椭圓的方程式擴展而得。

Zapf's Melior字體的'o'及'O'的輪廓可以用n = log(1/2) / log (7/9) ≈ 2.758的超橢圓來表示

字體設計師赫爾曼·察普夫在1952年設計的Melior英语Melior字體,利用超橢圓作為字母o的外形。三十年後高德納設法選擇了介於橢圓及超橢圓之間的曲線(兩者都用样条函数近似),作為他的Computer Modern字體。

1959年時瑞典斯德哥尔摩提出了其市中心賽格爾廣場圓環的設計競賽。丹麥詩人皮亞特·海恩(1905–1996)的設計以是一個n = 2.5,a/b = 6/5的超橢圓為基礎[2]。他的說明如下:

人是唯一一種會畫線然後將自己絆倒的動物。整個文明的推進有二個不同的取向:一種以直線及長方形為主,另一種則圓弧線為主。二種取向都有其機構上及心理上的原因。直線的事物可以放在一起,節省空間。而圓的東西很簡單,容易移動。但我們常常會陷入要在二者中選擇一個的困境,此時往往是介於二者中間的事物會更合適。隨意繪製的作品-例如以往在斯德哥尔摩出現過的圓環-無法達到這一點。它不是一個固定的形狀,也不像圓或方形有明確的定義,在美感上有所不足。超橢圓解決了這一個問題,它介於圓和長方形之間,既不是圓也不是長方形。它是一個有固定形狀、有明確定義的一個整體。

賽格爾廣場在1967年完成,而皮亞特·海恩繼續在其他的藝術品中使用超橢圓,包括牀、碟子、桌子等[3]。皮亞特·海恩將超橢圓以長軸為軸心旋轉,形成了一個立體的超級蛋英语superegg,其特點是可以平面上直立,不會倒下,因此變成一個特別的玩具。

1968年在巴黎在為越戰談判時,談判者不滿意談判桌的外形,Balinski、Kieron Underwood及Holt在一封寄給紐約時報的信件中建議以超橢圓作為談判桌的外形[2]。1968年由墨西哥城主辦奧運時,也以超橢圓為阿茲特克體育場的外形。

沃尔多·托布勒在1973年提出了托布勒超橢圓投影英语Tobler hyperelliptical projection[4],其中的經線就是用超橢圓來表示。

美式足球球隊匹兹堡钢人的標誌是三個相連的超橢圓。

相關條目

參考資料

  1. ^ J. Edwards. Differential Calculus. London: MacMillan and Co. 1892: 164. 
  2. ^ 2.0 2.1 Gardner, Martin, Piet Hein’s Superellipse, Mathematical Carnival. A New Round-Up of Tantalizers and Puzzles from Scientific American, New York: Vintage Press: 240–254, 1977, ISBN 978-0-394-72349-5 
  3. ^ The Superellipse页面存档备份,存于互联网档案馆), in The Guide to Life, The Universe and Everything by BBC (27th June 2003)
  4. ^ Tobler, Waldo, The hyperelliptical and other new pseudocylindrical equal area map projections, Journal of Geophysical Research, 1973, 78 (11): 1753–1759, Bibcode:1973JGR....78.1753T, doi:10.1029/JB078i011p01753. 
{{bottomLinkPreText}} {{bottomLinkText}}
超橢圓
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?