For faster navigation, this Iframe is preloading the Wikiwand page for 光放大器.

光放大器

光放大器光纤通信系统中能对光信号进行放大的一种子系统产品。光放大器的原理基本上是基于激光的受激辐射,通过将泵浦光的能量转变为信号光的能量实现放大作用。光放大器自从1990年代商业化以来已经深刻改变了光纤通信工业的现状。

分类

[编辑]

光放大器一般可以分为光纤放大器和半导体光放大器两种。光纤放大器还可以分为掺铒(Er)光纤放大器,掺镨(Pr)光纤放大器以及拉曼放大器等几种。其中掺铒光纤放大器工作于1550nm波长,已经广泛应用于光纤通信工业领域。掺镨的放大器可以工作于1310nm波长,但是由于转换效率不理想,现在仍然处于实验室研究阶段。拉曼放大器是近几年开始商用化的一种新型放大器,主要应用于需要分布式放大的场合。半导体光放大器结构小巧,方便集成,一直被很多人看好。但是由于偏振效应不太理想,一直没有大规模商用化。

原理

[编辑]

掺铒光纤放大器(Erbium-doped Optical Fiber Amplifier,EDFA)的组成基本上包括了掺光纤,泵浦激光器,光合路器几个部分。基于不同的用途,掺铒光纤放大器已经发展出多种不同的结构。

EDFA的放大原理與雷射產生原理類似,光纖中掺雜的稀土族元素Er(3+)其亞穩態(meta-stable state)和基態(ground state)的能量差相當於1550nm光子的能量、

當吸收適當波長的泵浦光能量(980nm或1480nm)後,電子會從基態躍遷到能階較高的激發態(exciting state),接著釋放少量能量轉移到較穩定的亞穩態、在泵浦光源足夠時鉺離子的電子會發生居量反轉(population inversion),即高能階的亞穩態比能階低的基態電子數量多、當適當的光信號通過時,亞穩態電子會發生受激輻射效應,放射出大量同波長光子、但因為存在振動能階,所以波長不是單一而是一個範圍,典型值為1530~1570nm、

历史

[编辑]

最早研究掺铒光纤放大器的是英国南安普敦大学。

高功率半導體放大器

[编辑]

對於高輸出功率,光放大器具有錐形結構被使用。的波長範圍為633納米至1480納米[1]

  1. ^ 半導體放大器. [2014-12-18]. (原始内容存档于2014-11-28). 
{{bottomLinkPreText}} {{bottomLinkText}}
光放大器
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?