For faster navigation, this Iframe is preloading the Wikiwand page for 光線轉換矩陣分析.

光線轉換矩陣分析

此條目需要編修,以確保文法、用詞、语气格式標點等使用恰当。 (2015年9月13日)請按照校對指引,幫助编辑這個條目。(幫助討論

光線轉換矩陣分析(又稱ABCD矩陣分析),是用於某些光學系統,特別是雷射領域的一種光線追蹤技術。它包含一個描述光學系統的光線轉化矩陣(ray transfer matrix),這個矩陣與一代表光線的向量相乘之後,可以得到光線在該系統中的運行軌跡。這類的分析也被應用於加速器物理(accelerator physics)中,用以追蹤通過粒子加速器中磁鐵裝置的粒子,詳情請見电子光学

以下介紹的技術使用了近軸逼近法,此逼近法意即假設所有光線相對於系統的光軸(optical axis)都處於小角度(θ為徑度)、短距離(x)。[1]

定義

[编辑]

光線追蹤技術以兩個平面為參考面,分別為輸入平面與輸出平面,這兩個平面均垂直於系統的光軸。此外,為了理論的一般性,我們定義系統的光軸即直角坐標系的z軸。一光線與輸入面呈θ1,從距離光軸 x1 的入射面進入系統,並在距光軸的x2的輸出面呈θ2射出,而n1, n2分別是在輸入面與輸出面中介質的折射率。

這些參數可表成下列關係式:

這個關係式以光線轉化矩陣(RTM, M)將光線向量與輸入、輸出面互相連結,M代表的是在這兩個平面之間的光學系統。根据折射定律与几何关系,可以證明RTM行列式值(determinant)即是兩個折射率的比值。

因此,若是輸入面與輸出面在同一個介質中,或是在具有同一個折射率的不同介質中,M等於1,相似的技術可以應用於電路學上,見二埠網路

範例

[编辑]

若兩個面中有空間存在,光線轉換矩陣可以表示成:

其中d表示兩參考平面的距離(沿著光軸測量),此矩陣有下列關係:

兩光線各別的參數可表示如下:

另一個範例為一薄透鏡,其光線轉畫矩陣為:

其中f為透鏡的焦距。若遇表示依複合光學系統,光線轉化矩陣可以交互相乘,形成一總括光線轉化矩陣,以下範例唯為一長度為d的空間與薄透鏡的複合系統:

注意,矩陣的乘法並沒有交換率,因此下面的系統先為一薄透鏡,後為一空間。

因此,矩陣必須照順序排好。不同的矩陣可以代表不同折射率的介質,或者是面鏡的反射等等。

光線轉化矩陣表格

[编辑]

簡易的光學元素

成分元素 矩陣 註解
傳輸在具有常數折射率的空間 d為傳輸距離
折射在平坦的表面 n1 為入射時的環境折射率

n2 為折射後的環境折射率

折射在曲面 R 為曲率半徑,當 R > 0 為凸面

n1 為入射時的環境折射率
n2 為折射後的環境折射率

從平坦面鏡反射
從曲面鏡反射 R 為曲率半徑,當 R > 0 為凹面,可用於近軸近似法
薄透鏡 f 為透鏡的焦距, 當 f > 0 為凸透鏡

唯有在焦距遠大於透鏡厚度時成立

厚透鏡 n1 為透鏡外的折射率

n2 為透鏡內的折射率
R1 為第一表面的曲率半徑
R2 為第二表面的曲率半徑
t 為透鏡的中心厚度

單直角稜鏡 k = (cos/cos) 是beam expansion的因素, 當 為入射角, 為折射角, d 為稜鏡的路徑長, n 為稜鏡的折射率。 這個舉證應用在orthogonal beam exit。

共振穩定性

[编辑]

RTM在模擬光學共振系統的時候特別有用,像是雷射。在最簡單的情況下由兩個完全相同,具100%反射率、曲率半徑R相互距離為d的面鏡組成。為了達到光學追蹤的目的,上述的系統可以等同於由一系列焦距為R/2,彼此間的距離為d的薄透鏡所組成的系統,此結構又被稱為a lens equivalent duct或lens equivalent waveguide. 上述系統每一個波導下的RTM如下:

光學轉化矩陣分析此時就可以決定一個波導的穩定性(等同於共振器),意即RTM可以找出光可以週期性地再聚焦,並待在波導內的狀況。我們可以找到系統中所有光的”eigenrays”,入射向量在每個mentioned sections的波導乘上一個實數或是複數的 λ 將會等於1。 使得:

此為一本徵方程式:

其中I為一2x2單位矩陣。 我們可以進一步計算此轉化矩陣的本徵值:

可導出以下特徵方程式:

其中

是RTM的軌,且

是RTM行列式值的倒數,帶入消去後我們可以得到:

其中

是穩定參數。本徵值是本徵方程式的解,由一元二次方程式可以解出:

現在,考慮一個光線通過系統N次:

如果此波導是穩定的,所有的光都不會被隨意的引道到偏離主軸很遠的地方,意即λN必須是有限的。吾人假設g2>1,則兩本徵值均為實數,又因為λ*λ- = 1 ,因此其中一個的絕對值必須大於1,這也暗示了代表本徵向量的光線不會收斂。因此在依穩定的波導中,g2≤1,以及本徵值可以用複數形式表示:

以g=cos(φ)表示。

假設 , , 的本徵向量,此兩向量橫跨所有向量空間,因為他們是正交 因此輸入的向量可以被表示成:

,

and 為某常數

再通過N個波導後,輸出則為:

這代表一個週期函數。

高斯光束的光線轉化矩陣

[编辑]

光線轉化矩陣的建立也可以用於描述高斯光束(Gaussian beams),若有一高斯光束波長為λ0,曲率半徑為R,光點大小w,折射率n,我們可以定義出一複數光束參數(complex beam parameter) q:

此光束可以轉移至一具有下列光線轉化矩陣的光學系統:

其中k為標準化常數,此常數可以讓光束向量的第二個成分為1,利用矩陣乘法:

由上式除以下式可得:

此方程式常以倒數形式表示:

範例:Free space

[编辑]

假設一光束通過一距離為d的空間,光線轉化矩陣為: 因此

這表示,通過一空間會增加半徑d。

範例:薄透鏡

[编辑]

假設一光束通過一焦距為f的薄透鏡,光線轉化矩陣為:

因此

再次強調,只有q的實部會被影響,曲率半徑會減少1/f。

另見

[编辑]

參考文獻

[编辑]
  1. ^ An exact method for tracing meridional rays is available here页面存档备份,存于互联网档案馆).
  • Bahaa E. A. Saleh and Malvin Carl Teich. Fundamentals of Photonics. New York: John Wiley & Sons. 1991.  Section 1.4, pp. 26 – 36.

外部連結

[编辑]
{{bottomLinkPreText}} {{bottomLinkText}}
光線轉換矩陣分析
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?