For faster navigation, this Iframe is preloading the Wikiwand page for 三次方程.

三次方程

三次函数的图像。该函数与x轴相交3次说明方程有3个实数根。

三次方程是未知项總次数最高为3的整式方程一元三次方程一般形式為

其中是屬於一個的數字,通常這個域為

本條目只解釋一元三次方程,而且簡稱之為三次方程式。

历史

[编辑]

中國唐朝数学家王孝通在武德九年(626年)前后所著的《緝古算經》中建立了25个三次多项式方程和提出三次方程实根的数值解法。[1]

波斯数学家欧玛尔·海亚姆(1048年-1123年)通过用圆锥截面与圆相交的方法構建了三次方程的解法。他说明了怎样用这种几何方法利用三角法表得到数字式的答案。

中国南宋的数学家秦九韶在他1247年编写的《数书九章》一书中提出了高次方程的数值解法秦九韶算法,提出“商常为正,实常为负,从常为正,益常为负”的原则。

在十六世纪早期,意大利数学家费罗找到了能解一种三次方程的方法,也就是形如的方程。事实上,如果我们允许是複数,所有的三次方程都能变成这种形式,但在那个时候人们不知道複数。

尼科洛·塔爾塔利亞被認為是最早得出三次方程式一般解的人。1553年他在一場數學競賽中解出所有三次方程式的問題。隨後卡尔丹诺拜訪了塔爾塔利亞請教三次方程式解法並得到了啟發。卡尔丹诺注意到塔爾塔利亞的方法有时需要他给复数开平方。他甚至在《数学大典》裡包括了这些複數的计算,但他并不真正理解它。拉斐尔·邦贝利(Rafael Bombelli)详细地研究了这个问题,并因此被人们认为是複数的发现者。

判别式

[编辑]

时,方程有一个实根和两个共轭複根;

时,方程有三个实根:当

时,方程有一个三重实根;

时,方程的三个实根中有两个相等;

时,方程有三个不等的实根。

三次方程解法

[编辑]

求根公式法

[编辑]

红色字体部分为判别式

时,方程有一个实根和两个共轭複根;

时,方程有三个实根:

时,方程有一个三重实根;

时,方程的三个实根中有两个相等;

时,方程有三个不等的实根。


三角函数解

[编辑]

,其中

若令,则

卡尔达诺法

[编辑]

為域,可以進行開平方或立方運算。要解方程只需找到一個根,然後把方程除以,就得到一個二次方程,而我們已會解二次方程。

在一個代數封閉域,所有三次方程都有三個根。複數域就是這樣一個域,這是代數基本定理的結果。

解方程步驟:

  • 把原來方程除以首項係數,得到:
,其中
  • 代換未知項,以消去二次項。當展開,會得到這項,正好抵消掉出現於的項。故得:
,其中是域中的數字。
  • 滿足,則為解
這個假設的hint如下:
。前一方程化為
展開:
重組:
分解:
  • 。我們有因為。所以是輔助方程的根,可代一般二次方程公式得解。

接下來,的立方根,適合,最後得出

在域裡,若是立方根,其它的立方根就是,當然還有,其中,是1的一个复数立方根。

因為乘積固定,所以可能的。因此三次方程的其它根是

判别式

[编辑]

最先嘗試解的三次方程是實係數(而且是整數)。因為實數域並非代數封閉,方程的根的數目不一定是3個。所遺漏的根都在裡,就是的代數閉包。其中差異出現於的計算中取平方根時。取立方根時則沒有類似問題。

可以證明實數根數目依賴於輔助方程的判別式

  • ,方程有一个实根和两个共轭複根;
  • ,方程有三个实根:当时,方程有一个三重实根;当时,方程的三个实根中有两个相等;
  • ,方程有三个不等的实根:其中(注意,由於此公式應對於的形式,因此這裡的實際上是前段的,應用時務必注意取負號即)。

注意到实系数三次方程有一實根存在,這是因為非常數多項式極限無窮大,對奇次多項式這兩個極限異號,又因为多項式是連續函數,所以從介值定理可知它在某點的值為0。

第一個例子

[编辑]

我們依照上述步驟進行:

  • (全式除以
  • ,代換:,再展開
  • 。設的根。

该方程的另外两个根:

第二个例子

[编辑]

这是一个历史上的例子,因为它是邦别利考虑的方程。

方程是

从函数算出判别式的值,知道这方程有三实根,所以比上例更容易找到一个根。

前两步都不需要做,做第三步:

的根。这方程的判别式已算出是负数,所以只有实根。很吊诡地,这方法必须用到复数求出全是实数的根。这是发明复数的一个理由:复数是解方程必需工具,即使方程或许只有实根。

我们解出。取复数立方根不同于实数,有两种方法:几何方法,用到辐角和模(把辐角除以3取模的立方根);代数方法,分开复数的实部和虚部: 现设

等价于:
(实部)
(虚部)
(模)

得到,也就是,而是其共轭:

归结得,可以立时验证出来。

其它根是,其中

是负,共轭,故此也是(要适当选取立方根,记得);所以我们可确保是实数,还有

盛金公式法

[编辑]

,其中系数皆为实数。

判别式

[编辑]

重根判别式:

总判别式:

情况1:

[编辑]

情况2:

[编辑]

,得:

情况3:

[编辑]

,得:

情况4:

[编辑]

,得:

极值

[编辑]

驻点的公式

[编辑]

将其微分,可得

  • 有序列表项

拐点

[编辑]

,可得

驻点的类型

[编辑]

由函数取极值的充分条件可知:
的极大值点;
的极小值点;
拐点

可知:
的驻点为极大值点;
的驻点为极小值点;
的驻点为拐点。

參見

[编辑]
此章节尚無任何内容,需要扩充

參考資料

[编辑]
  1. ^ 三上义夫 《中国算学之特色》 34页 商务印书馆。

外部链接

[编辑]
{{bottomLinkPreText}} {{bottomLinkText}}
三次方程
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?