For faster navigation, this Iframe is preloading the Wikiwand page for 非线性光学.

非线性光学

本条目存在以下问题,请协助改善本条目或在讨论页针对议题发表看法。 此条目需要扩充。 (2017年10月18日)请协助改善这篇条目,更进一步的信息可能会在讨论页扩充请求中找到。请在扩充条目后将此模板移除。 此条目需要精通或熟悉相关主题的编者参与及协助编辑。 (2017年10月18日)请邀请适合的人士改善本条目。更多的细节与详情请参见讨论页。 此条目没有列出任何参考或来源。 (2017年10月18日)维基百科所有的内容都应该可供查证。请协助补充可靠来源改善这篇条目。无法查证的内容可能会因为异议提出而被移除。

非线性光学主要用来研究非线性光学现象和理论。

介质产生的极化强度决定于入射光的电场强度,其作用可用多项式展开成多阶形式.在通常的弱光条件下,高阶项因为系数很小而可以忽略,此时可近似看成一种线性关系。但是在强激光场作用下(通常在108 V/m左右,由激光脉冲提供),极化强度的高阶项强度不可被忽略,非线性作用出现,从而可以实现光和光之间的相互作用。入射光的强度越高,高阶非线性效应越明显。非线性光学直到激光出现后,人们对二次谐波产生英语Second-harmonic generation的发现才发展起来。(Peter Franken et al. at University of Michigan in 1961)

非线性光学包括光学倍频、混频、参量振荡、克尔效应光孤子等现象。利用强度极高的飞秒激光可以产生高达上百倍的倍频效应,可以用来产生深紫外光和软 X 射线。常用于产生非线性效应的物质有铌酸锂钽酸锂磷酸氧钛钾(KTP)、磷酸二氢钾(KDP)、偏硼酸钡(BBO)等晶体(具有高的2阶非线性系数)及稀有气体(主要用于产生高阶非线性效应)。光参量振荡(OPO)是目前产生大范围连续可调波长(波长从红外到可见光甚至紫外光)激光的唯一方法。

参阅

{{bottomLinkPreText}} {{bottomLinkText}}
非线性光学
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?