For faster navigation, this Iframe is preloading the Wikiwand page for 可数选择公理.

可数选择公理

可数选择公理,指示为,是公理化集合论的类似于选择公理的一个公理。它声称非空集合的任何可数搜集都一定有选择函数保罗·寇恩证明了ACωZermelo-Fraenkel集合论)中是不可证明的。

足够证明可数多可数集合的并集是可数的。它还足够证明所有无限集合都是戴德金无限的(等价的说:有可数无限的真子集)。对于开发数学分析特别有用,这里的很多结果依赖于实数的可数集合有选择函数(考虑为有理数柯西序列的集合)。

是弱形式的选择公理(AC),它声称非空集合的“所有”搜集一定有一个选择函数。AC明确的蕴涵了依赖选择公理(DC),而DC足够证明。但是要严格弱于DC(而DC严格弱于AC)。

用法

作为应用的例子,下面是所有无限集合是戴德金无限的一个证明(在中):

是无限的。对于每个自然数,设的所有元素子集的集合。因为是无限的,每个是非空的。对序列应用,便得到了序列(),这里的每个是有个元素的的子集。
集合可能是相交的,但是我们可以定义
与所有的并集的差集,
明显的每个集合都有至少1个和至多个元素,而集合是两两不相交的。再对序列应用,便得到了序列,其中
所以所有都是相异的,而包含一个可数集合。定义把每个映射到的函数(并固定所有的其他元素),f是从的一一映射,它不是满射,这证明了是戴德金无限的。

参见

本条目含有来自PlanetMathaxiom of countable choice》的内容,版权遵守知识共享协议:署名-相同方式共享协议

{{bottomLinkPreText}} {{bottomLinkText}}
可数选择公理
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?