For faster navigation, this Iframe is preloading the Wikiwand page for 卡迈克尔数.

卡迈克尔数

数论上,卡迈克尔数(英语:Carmichael numbers)是正合成数,且使得对于所有跟互素的整数

概观

费马小定理说明所有素数都有这个性质。在这方面,卡迈克尔数和素数十分相似,所以它们称为伪素数

因为这些数的存在,使得费马素性检验变得不可靠。不过,它仍可用于证明一个数是合数。另一方面,随着数越来越大,卡迈克尔数变得越来越少,1至有585 355个卡迈克尔数。

卡迈克尔数的一个等价的定义在Korselt定理(1899年)出现:一个正合成数是卡迈克尔数,当且仅当无平方数约数且对于所有素因数

这个定理即时说明了所有卡迈克尔数是奇数

Korselt虽然发现了这些性质,但不能找到例子。1910年罗伯特·丹尼·卡迈克尔找到了第一个兼最小的有这样性质的数——561。,无平方数因数,且2|560 ; 10|560 ; 16|560 。

之后的卡迈克尔数:(OEIS:A002997

1105 = 5×13×17 (4 | 1104, 12 | 1104, 16 | 1104)
1729 = 7×13×19 (6 | 1728, 12 | 1728, 18 | 1728)
2465 = 5×17×29 (4 | 2464, 16 | 2464, 28 | 2464)
2821 = 7×13×31 (6 | 2820, 12 | 2820, 30 | 2820)
6601 = 7×23×41 (6 | 6600, 22 | 6600, 40 | 6600)
8911 = 7×19×67 (6 | 8910, 18 | 8910, 66 | 8910)

J. Chernick 在1939年证明的一个定理,可以构造卡迈克尔数的一个子集

对于正整数,若其三个约数都是素数,它是卡迈克尔数。

保罗·埃尔德什猜想有无限个卡迈克尔数,1994年 William Alford 、 Andrew Granville 及 Carl Pomerance 证明了这个命题。

此外,对于足够大的,1至之间有至少个卡迈克尔数。

1992年Löh和Niebuhr找到一些很大的卡迈克尔数,其中一个有1 101 518 个约数且有多于个位数。

性质

卡迈克尔数有至少3个正素因数。以下是首个k个正素因数的卡迈克尔数,k=3,4,5,...:(OEIS:A006931

k  
3 561 = 3×11×17
4 41041 = 7×11×13×41
5 825265 = 5×7×17×19×73
6 321197185 = 5×19×23×29×37×137
7 5394826801 = 7×13×17×23×31×67×73
8 232250619601 = 7×11×13×17×31×37×73×163
9 9746347772161 = 7×11×13×17×19×31×37×41×641

以下是首十个有4个素因数的卡迈克尔数:(OEIS:A074379

i  
1 41041 = 7×11×13×41
2 62745 = 3×5×47×89
3 63973 = 7×13×19×37
4 75361 = 11×13×17×31
5 101101 = 7×11×13×101
6 126217 = 7×13×19×73
7 172081 = 7×13×31×61
8 188461 = 7×13×19×109
9 278545 = 5×17×29×113
10 340561 = 13×17×23×67

更高阶的卡迈克尔数

参考

不完全翻译自英文版。

  • Chernick, J. (1935). On Fermat's simple theorem. Bull. Amer. Math. Soc. 45, 269–274.
  • Ribenboim, Paolo (1996). The New Book of Prime Number Records.
  • Howe, Everett W. (2000). Higher-order Carmichael numbers. Mathematics of Computation 69, 1711–1719. (online version)Archive.is存档,存档日期2012-07-01
  • Löh, Günter and Niebuhr, Wolfgang (1996). A new algorithm for constructing large Carmichael numbers页面存档备份,存于互联网档案馆)(pdf)
  • Korselt (1899). Probleme chinois. L'intermediaire des mathematiciens, 6, 142–143.
  • Carmichael, R. D. (1912) On composite numbers P which satisfy the Fermat congruence . Am. Math. Month. 19 22–27.
  • Erdős, Paul (1956). On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4, 201 –206.
  • Alford, Granville and Pomerance (1994). There are infinitely many Carmichael numbers, Ann. of Math. 140(3), 703–722.
{{bottomLinkPreText}} {{bottomLinkText}}
卡迈克尔数
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?