For faster navigation, this Iframe is preloading the Wikiwand page for Дистанційно-транзитивний граф.

Дистанційно-транзитивний граф

Матеріал з Вікіпедії — вільної енциклопедії.

Граф Бігса — Сміта, найбільший 3-регулярний дистанційно-транзитивний граф.

Дистанційно-транзитивний граф (англ. distance-transitive graph) — це такий граф, що для будь-якої пари його вершин і , відстань між якими , і будь-якої іншої пари вершин і , відстань між якими також , знайдеться автоморфізм, що переводить в , а в .

Термін дистанційно-транзитивний граф увели Бігс і Сміт 1971 року[1].

Визначення

[ред. | ред. код]
Повний граф
Граф Петерсена
Граф Хівуда
Граф Паппа
Граф Коксетера

Визначення дистанційно-транзитивного граф

Нехай неорієнтований, зв'язний, обмежений граф має групу автоморфізмів . Кількість ребер у найкоротшому шляху, що з'єднує називають відстанню між і і позначають як . Нехай  — підгрупа . Граф називають -дистанційно-транзитивним (англ. -distance-transitive якщо для кожної четвірки вершин , таких що , існує автоморфізм , який відображає і .[2]

Іншими словами[2] є -дистанційно-транзитивним графом, якщо підгрупа діє транзитивно на множину .

Масив перетинів

[ред. | ред. код]

Нехай  — неорієнтований, зв'язний, обмежений граф, а дві його вершини розташовані на відстані одна від одної. Всі вершини , інцідентні вершині можна розбити на три множини , і , залежно від їх відстані до вершини :

Якщо граф дистанційно-транзитивний, то кардинальні числа множин не залежать від вершин і , а залежать тільки від відстані . Нехай , де  — числа перетинів.

Визначимо масив перетинів дистанційно-транзитивного графу як[3][4]:

Оскільки дистанційно-транзитивний граф є регулярним, приміром степеня , тоді , , а . Більш того, . Тому масив перетинів дистанційно-регулярного графу часто записують як:

Властивості

[ред. | ред. код]

Кожен дистанційно-транзитивний граф є дистанційно-регулярним, проте зворотне не справедливе. Це доведено 1969 року, ще до введення в ужиток терміна дистанційно-транзитивний граф, групою радянських математиків[5] (Адельсон-Вельський Г. М., Вейсфейлер Б. Ю.[ru], Леман А. А., Фараджев І. А.). Найменший дистанційно-регулярний граф, який не є дистанційно-транзитивним — це граф Шрікханде. Єдиний тривалентний граф цього типу — це 12-клітка Татта, граф зі 126 вершинами.

Дистанційно-транзитивний граф є вершинно-транзитивним і симетричним.

Дистанційно-транзитивні графи мають велике число груп автоморфізмів.

Гігман[6][7] розвинув теорію груп рангу 3. Ці групи є групами автоморфізмів сильно регулярних графів, причому вони діють транзитивно як на множині вершин і ребер, так і на множині пар різних несуміжних вершин. Такі графи є дистанційно транзитивними графами діаметру 2.

Приклади

[ред. | ред. код]

Найпростіші приклади дистанційно-транзитивних графів:

Складніші приклади дистанційно-транзитивних графів:

Класифікація кубічних дистанційно-транзитивних графів

[ред. | ред. код]

1971 року Бігс[en] і Сміт у роботі[1] довели теорему, що серед тривалентних графів існує всього лише 12 дистанційно-транзитивних графів:

Назва графу Число вершин Діаметр Обхват Масив перетинів
Повний граф K 4 4 1 3 {3; 1}
Повний двочастковий граф K 3,3 6 2 4 {3,2; 1,3}
Граф Петерсена 10 2 5 {3,2; 1,1}
Граф гіперкуба 8 3 4 {3,2,1; 1,2,3}
Граф Хівуда 14 3 6 {3,2,2; 1,1,3}
Граф Паппа 18 4 6 {3,2,2,1; 1,1,2,3}
Граф Коксетера 28 4 7 {3,2,2,1; 1,1,1,2}
Граф Татта — Коксетера 30 4 8 {3,2,2,2; 1,1,1,3}
Граф додекаедра 20 5 5 {3,2,1,1,1; 1,1,1,2,3}
Граф Дезарга 20 5 6 {3,2,2,1,1; 1,1,2,2,3}
Граф Бігса — Сміта 102 7 9 {3,2,2,2,1,1,1; 1,1,1,1,1,1,3}
Граф Фостера 90 8 10 {3,2,2,2,2,1,1,1; 1,1,1,1,2,2,2,3}

Повний список дистанційно-транзитивних графів відомий для деяких степенів, більших від трьох, але класифікація дистанційно-транзитивних графів з довільно великим степенем залишається відкритою.

Найпростіше асимптотичне сімейство дистанційно-транзитивних графів — це графи гіперкубів. Інші сімейства — це складені кубічні графи[en] і квадратні турові графи. Всі три сімейства мають довільно великий степінь.

Примітки

[ред. | ред. код]

Література

[ред. | ред. код]
  • Адельсон-Вельский Г.М., Вейсфелер Б.Ю., Леман А.А., Фараджев И.А. Об одном примере графа, не имеющнго транзитивной группы автоморфизмов // Доклады Академии наук. — 1969. — Т. 185, № 5 (14 вересня). — С. 975—976.
  • Biggs N.L., Smith D.H. On trivalent graphs // Bulletin of the London Mathematical Society. — 1971. — Vol. 3, iss. 2 (14 September). — P. 155—158. — DOI:10.1112/blms/3.2.155.
  • Biggs N.L. Algebraic Graph Theory. — 2nd. — Cambridge University Press, 1993. — 205 с.
  • Higman D.G. Finite permutation groups of rank 3 // Math. Zeitschr.. — 1964. — 14 вересня. — С. 142—156.
  • Higman D.G. Primitive rank 3 groups with a prime subdegree // Math. Zeitschr.. — 1966. — Т. 91 (14 вересня). — С. 70-89.
  • Ivanov A. A. Distance-Transitive Graphs and Their Classification / (eds.) // Investigations in Algebraic Theory of Combinatorial Objects. Mathematics and Its Applications (Soviet Series). — Dordrecht : Springer, 1994. — Vol. 84 (14 September). — P. 283-378. Архівовано з джерела 9 липня 2021. Процитовано 4 липня 2021.
  • Lauri J., Scapelatto R. Topics in Graph Automorphisms and Reconstruction. — 2nd. — Combridge : Combridge University Press, 2016. — 188 с.

Ранні роботи

[ред. | ред. код]
  • Biggs N. Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969). — London : Academic Press, 1971. — С. 15—23.
  • Biggs N. Finite Groups of Automorphisms. — London & New York : Cambridge University Press, 1971. — Т. 6. — (London Mathematical Society Lecture Note Series)
  • Smith D.H. Primitive and imprimitive graphs // The Quarterly Journal of Mathematics. Oxford. Second Series. — 1971. — Vol. 22, iss. 4 (14 September). — P. 551—557. — DOI:10.1093/qmath/22.4.551.

Огляди

[ред. | ред. код]
  • Biggs N.L. Distance-Transitive Graphs // Algebraic Graph Theory. — 2nd. — Cambridge University Press, 1993. — С. 155–163.
  • Van Bon J. Finite primitive distance-transitive graphs // European Journal of Combinatorics. — 2007. — Vol. 28, iss. 2 (14 September). — P. 517—532. — DOI:10.1016/j.ejc.2005.04.014..
  • Brouwer A.E, Cohen A.M., Neumaier A. Distance-Transitive Graphs // Distance-Regular Graphs. — New York : Springer-Verlag, 1989. — С. 214—234.
  • Cohen A.M. Topics in Algebraic Graph Theory / L. W. Beineke, R. J. Wilson. — Cambridge University Press, 2004. — Т. 102. — С. 222—249. — (Encyclopedia of Mathematics and its Applications)
  • Godsil C., Royle G. Distance-Transitive Graphs // Algebraic Graph Theory. — New York : Springer-Verlag, 2001. — С. 66—69.

Посилання

[ред. | ред. код]
{{bottomLinkPreText}} {{bottomLinkText}}
Дистанційно-транзитивний граф
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?