For faster navigation, this Iframe is preloading the Wikiwand page for Полівектор.

Полівектор

Матеріал з Вікіпедії — вільної енциклопедії.

Мультивектор, р-вектор, векторного простору  — елемент деякого зовнішнього ступеня простору над полем . p-вектор може розумітися як кососиметризований р раз контраваріантний тензор на .

2-вектор також називають бівектором, а 3-вектор - тривектором. p-вектор дуальний до p-форми. Бівектори пов'язані з псевдовекторами та використовуються для представлення обертання.

Неоднозначність представлення бівектора векторами

[ред. | ред. код]

Розглянемо дві лінійні комбінації векторів і :

Користуючись спочатку лінійністю зовнішнього добутку щодо кожного із аргументів, а потім антисиметричністю, знаходимо:

Коефіцієнт в правій частині формули (8) є визначником матриці трансформації:

Якщо цей визначник дорівнює одиниці (наприклад матриця трансформації є поворотом в площині ), то бівектор виражається через нові вектори і так само, як і через старі (порівняйте з формулою (3)):

Паралельність вектора до бівектора

[ред. | ред. код]

Нехай ми маємо вектор і бівектор . Розглянемо тривектор, утворений зовнішнім добутком цих величин:

Якщо вектор буде лінійною комбінацією векторів і , то визначник у формулі (11) перетвориться в нуль, і для цього випадку маємо:

Алгебраїчна залежність компонент бівектора

[ред. | ред. код]

Оскільки вектори і лежать у площині бівектора , то для них справедлива формула (12), тому для будь-яких індексів знаходимо:

Отже бівектор виділяється із множини всіх антисиметричних тензорів тим, що компоненти бівектора алгебраїчно залежні:

(Примітка: формула (14) має деяку схожість з алгебраїчною тотожністю Біанкі для тензора Рімана, і це не випадково)

Ми бачили, що для бівектора виконується рівність (14). Покажемо що навпаки, якщо для деякого антисиметричного тензора виконується рівність (14) то цей тензор буде бівектором, тобто можна за цим тензором побудувати такі два вектори і , що виконується рівність (1).

Нехай тензор ненульовий, тобто не всі компоненти цього тензора дорівнюють нулю. Нехай для деяких фіксованих індексів маємо . Тоді із формули (14) одержуємо для всіх індексів :

В даній системі координат ми можемо наприклад взяти такі два вектора (числа фіксовані):

Очевидно, що тоді формула (1) виконується.

Підрахунок кількості параметрів бівектора

[ред. | ред. код]

Антисиметричний тензор другого рангу має алгебраїчно незалежних компонент.

Бівектор за формулою (1) виражається через чисел , але оскільки є деяка довільність у виборі векторів і (формула 8) і ми можемо в рівності

три параметри обрати довільно, то бівектор має алгебраїчно незалежних параметра.

Знайдемо «надлишкову» кількість параметрів, якою антисиметричний тензор відрізняється від бівектора:

З цієї формули ми бачимо, що для дво- і тривимірного простору надлишок дорівнює нулю (тобто кожен антисиметричний тензор є бівектором), для 4-вимірного простору цей надлишок задається одним параметром, для вищих розмірностей цих надлишкових параметрів досить багато.

Представлення антисиметричного тензора бівектором в розмірностях 2 і 3

[ред. | ред. код]

Якщо розмірність простору менша чотирьох, то у формулі (14) щонайменше два індекси з чотирьох збігаються. Перебором варіантів можна пересвідчитись, що тоді обов'язково один із трьох доданків в (14) дорівнює нулю (бо ), а два інші рівні за величиною і протилежні за знаком. Тобто рівність (14) виконується завжди для будь-якого антисиметричного тензора. Формула (16) дає обчислення таких векторів і , що виконується рівність (1).

Норма (величина) бівектора

[ред. | ред. код]

Далі в цій статті ми будемо припускати існування евклідової метрики, щоб можна було говорити про величини векторів, бівекторів і про кути між ними. Використовуючи метричний тензор, ми можемо піднімати і опускати індекси тензорів. Розглянемо скаляр, який утворюється множенням бівектора на себе з наступною згорткою за відповідними індексами. У наступних формулах ми будемо користуватися правилом Ейнштейна, що у кожному виразі де зустрічаються однакові індекси, за ними відбувається додавання:

У дужках останнього виразу стоїть площа паралелограма, побудованого на векторах і . Ця площа і називається нормою бівектора.

Бівектор як лінійний оператор

[ред. | ред. код]

Розглянемо згортку бівектора з довільним вектором :

В результаті цієї операції ми маємо вектор , що є лінійною комбінацією векторів і , тобто лежить в площині . Якщо вектор ортогональний до площини , то в результаті одержимо нуль. Якщо вектор лежить у площині , наприклад , то одержимо ненульовий вектор площини повернутий на , і розтягнутий в разів:

тобто дію бівектора на вектор можна розкласти на три етапи: проєкцію вектора на площину, розтягнення, і поворот в площині на кут .

Література

[ред. | ред. код]
  • Кострикин А. П., Манин Ю. И. Линейная алгебра и геометрия[недоступне посилання з червня 2019], — Наука, Москва, 1980.
  • Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, — Физматлит, Москва, 2009.
{{bottomLinkPreText}} {{bottomLinkText}}
Полівектор
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?