For faster navigation, this Iframe is preloading the Wikiwand page for Diagonalisering.

Diagonalisering

Diagonalisering är inom linjär algebra en omvandling av en matris till en diagonalmatris. En sådan omvandling sker med en transformationsmatris , så att för en matris och en diagonalmatris . Man säger att en matris är diagonaliserbar om den kan diagonaliseras, med andra ord är en matris diagonaliserbar om det finns en matris sådan att för en diagonalmatris .

Villkor för diagonaliserbarhet

[redigera | redigera wikitext]

En matris med format , med andra ord en linjär avbildning från ett vektorrum till sig själv , är diagonaliserbar om och endast om dimensionen av dess egenrum är . Detta inträffar då har egenvektorer som är en bas för vektorrummet. Då kan uttryckas som , där har :s egenvektorer som kolonnvektorer och har :s egenvärden i diagonalen.

Egenvektorerna till en matris är en bas för hela rummet om alla egenvärden har en geometrisk multiplicitet som är lika med deras algebraiska multiplicitet, och alltså är en matris diagonaliserbar under dessa förutsättningar.

Ett tillräckligt (men ej nödvändigt) villkor för att en matris med format ska ha en bas av egenvektorer är att matrisen har distinkta egenvärden

Speciella matriser

[redigera | redigera wikitext]

Nilpotenta matriser är ej diagonaliserbara, då de endast har egenvärdet 0. Detta skulle innebära att diagonalmatrisen skulle bli en nollmatris och , vilket inte är sant.

Projektioner är diagonaliserbara, och har talen 1 och 0 i diagonalen.

Enligt spektralsatsen är reella symmetriska matriser diagonaliserbara, och deras egenvektorer är ortogonala. Samma sak gäller för komplexa hermiteska matriser och normala matriser. Då egenvektorerna är ortogonala kan transformationsmatrisen skrivas som en ortogonal matris i det reella fallet och en unitär matris i det komplexa fallet, så att en symmetrisk matris kan skrivas , det vill säga med en transponerad istället för en inverterad transformationsmatris till höger, vilket är mycket lättare att räkna ut.

Diagonalisera matrisen

Först beräknas matrisens egenvärden:

De tre egenvärdena är distinkta och därför är diagonaliserbar. Egenvektorerna till egenvärdena beräknas sedan:

Dessa bildar en bas för vektorrummet. Matrisen bildas från vektorerna och dess invers beräknas. blir då

Tillämpningar

[redigera | redigera wikitext]

Om en matris är diagonaliserbar, kan detta användas för att beräkna potenser effektivt, eftersom

Kvadratroten ur en matris kan definieras som

där diagonalelementen i är roten ur :s diagonalelement. Detta ger att


{{bottomLinkPreText}} {{bottomLinkText}}
Diagonalisering
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?