For faster navigation, this Iframe is preloading the Wikiwand page for Изотопи водоника.

Изотопи водоника

Водоник (H) има три изотопа који се могу наћи у природи, понекад означени 1H, 2H и 3H. Прва два су стабилна, док 3H има време полураспада од 12.32 године. Такође постоје и тежи изотопи, који су сви синтетички и имају време полураспада мање од једне зептосекуне (10-21 секунди). Од ових 5H је најстабилнији, а 7H најнестабилнији. [1]

Водоник је једини елемент чији изотопи имају различита имена у уобичајеној употреби данас: 2H (или водоник-2) је деутеријум [2], а 3H (водоник-3) изотоп је трицијум [3]. За деутеријум и трицијум се понекад користе симболи D и Т. IUPAC прихвата симболе D и Т, али препоручује да се уместо тога користе стандардни симболи (2H и 3H), како би се избегла забуна при абецедном сортирању хемијских формула [4]. Обичан изотоп водоника, без неутрона, понекад се назива протијум [5]. (Током раних истраживања радиоактивности, неки други тешки радиоактивни изотопи су добијали имена, али се таква имена ретко користе данас.)

Водоник-1 (протијум)

[уреди | уреди извор]

1H (атомска маса 1.007825032241(94) U) је најчешћи изотоп водоника са 99,98% заступљености. Због тога што се језгро овог изотопа састоји од само једног протона, добило је формалан назив протијум.

Протон се никада није посматрао до пропадања, и због тога се сматра да је водоник-1 стабилан изотоп. Неке теорије великог обједињења предложене 1970-их предвиђају да распад протона може да се догоди са временом полураспада између 1031 и 1036 година. Ако се установи да је ово предвиђање истинито, онда је водоник-1 (и свакако сва језгра за која се сада сматра да су стабилни) само “посматрано” стабилни. До данас, експерименти су показали да је минимално време полураспада протона у вишку од 1034 година.

Водоник-2 (деутеријум)

[уреди | уреди извор]

2H (атомска маса 2.01410177811(12) U), други стабилни изотоп водоника, познат је као деутеријум, и у језгру садржи један протон и један неутрон. Језгро деутеријума се зове деутерон. Деутеријум чини 0.0026 – 0.0184% (популацијом, а не масом) водоникових узорака на Земљи, где се нижи број претежно налази у узорцима водониковог гаса, а веће обогаћење (0.015% или 150 ppm) типично за морску воду. Деутеријум на Земљи је обогаћен с обзиром на почетну концентрацију у Великом праску и спољњем Сунчевом систему (око 27 ppm, фракцијом атома) и концентрацијом у старијим деловима Млечног пута (око 23 ppm). Претпоставља се да је диференцијална концентрација деутеријума у унутрашњем Соларном систему последица ниже испарљивости деутеријумовог гаса и једињења, обогаћујући фракције деутеријума у кометама и планетама изложеним значајној топлоти Сунца током милијарди година еволуције Сунчевог система.

Деутеријум није радиоактиван, и не представља значајну опасност од токсичности. Вода обогаћена молекулима који садрже деутеријум уместо протијума, зове се тешка вода. Деутеријум и његова једињења се користе као нерадиоактивна ознака у хемијским експериментима и раставарачима за 1H-NMR спектроскопију. Тешка вода се користи као неутронски модератор и расхладно средство за нуклеарне реакторе. Деутеријум је такође потенцијално гориво за комерцијалну нуклеарну фузију.

Водоник-3 (трицијум)

[уреди | уреди извор]

3H (атомска маса 3.01604928199(23) U) познат је као трицијум, и у језгру садржи један протон и два неутрона. Радиоактиван је, распада се у хелијум-3 кроз бета-распад са временом полураспада од 12.32 године.[6] Трагови трицијума јављају се природно услед интеракције космичког зрачења са атмосферским гасовима. Трицијум се такође ослобађа током тестирања нуклеарних оружја. Користи се у термонуклеарном фузионим реакторима, као индикатор у изотопној геохемији, и специјализовано у самонапајајућим уређајима за осветљене.

Најчешћа метода производње трицијума је бомбардовање природних изотопа литијума, литијума-6, неутронима у нуклеарном реактору.

Трицијум је некада био рутински коришћен у хемијским и биолошким експериментима означивања као радио-ознака, што је мање уобичајено у последње време. D-T нуклеарна фузија користи трицијум као главни реактант, заједно са деутеријумом, ослобађајући енергију услед губитка масе приликом судара два језгра и фузије при високим температурама.

Водоник-4

[уреди | уреди извор]

4H (атомска маса је 4.02643(11) U) садржи један протон и три неутрона у свом језгру. То је веома нестабилан изотоп водоника. Синтетише се у лабораторији бомбардовањем трицијума брзим језгрима водониковог изотопа деутеријума. У овом експерименту, језгро трицијума прима неутрон из брзог језгра деутеријума.[7] О присуству водоника-4 закључујемо на основу детекције емитованог протона. Он се распада кроз емисију неутрона у водоник-3 (трицијум) са временом полураспада од око 139 ± 10 јоктосекунди (или (1.39 ± 0.10) × 10-22 секунди).

Водоник-5

[уреди | уреди извор]

5H је веома нестабилан изотоп водоника. Језгро садржи један протон и четири неутрона. Синтетише се у лабораторији бомбардовањем трицијума брзим језгрима трицијума.[7][8] У овом експеримемнту једно језгро трицијума везује два неутрона од другог при чему настаје језго с једним протоном и четири неутрона. Преостали протон је могуће детектовати и тако закључујемо о постојању водоника-5. Распада се приликом двоструке емисије неутрона на водоник-3 (трицијум) и има време полураспада од најмање 910 јоктосекунди (9.1 × 10-22 секунди).

Водоник-6

[уреди | уреди извор]

6H распада се или приликом троструког зрачења неутронима на водоник-3 (трицијум) или четвороструког неутронског зрачења на водоник-2 (деутеријум) и има време полураспада од 290 јоктосекунди (2.9 × 10-22 секунди).

Водоник-7

[уреди | уреди извор]

7H састоји се од једног протона и шест неутрона. Први пут је синтетизован 2003. године од стране групе руских, јапанских и француских научника у RIKEN-овој фабрици за радиоактивне изотопе бомбардовањем водоника атомом хелијума-8. У резултујућој реакцији свих 6 неутрона хелијума-8 преузима језгро водоника. Два преостала протона су регистрована RIKEN телескопом, уређајем који се састоји од више нивоа сензора, постављених иза циља RI Beam циклотрона. Водоник-7 има период полураспада од 23 јоктосекунде (2.3 × 10-23 секунди).[9]

Ланци распада

[уреди | уреди извор]

Већина тешких водоникових изотопа распада се директно на 3H, који се онда распада на стабилни изотoп 3He. Ипак, 6H се понекад распад на 2H.

Периоди распада су у јоктосекундама за све изотопе осим 3H, који је изражен у годинама.

Референце

[уреди | уреди извор]
  1. ^ Gurov, Yu. B.; Aleshkin, D. V.; Behr, M. N.; Lapushkin, S. V.; Morokhov, P. V.; Pechkurov, V. A.; Poroshin, N. O.; Sandukovsky, V. G.; Tel’kushev, M. V. (март 2005). „Spectroscopy of superheavy hydrogen isotopes in stopped-pion absorption by nuclei”. Physics of Atomic Nuclei (на језику: енглески). 68 (3): 491—497. ISSN 1063-7788. doi:10.1134/1.1891200. 
  2. ^ Nič, Miloslav; Jirát, Jiří, ур. (2009-06-12), deuterium (на језику: енглески) (2.1.0 изд.), IUPAC, ISBN 978-0-9678550-9-7, doi:10.1351/goldbook.d01648, Приступљено 2020-04-21 
  3. ^ Nič, Miloslav; Jirát, Jiří, ур. (2009-06-12), tritium (на језику: енглески) (2.1.0 изд.), IUPAC, ISBN 978-0-9678550-9-7, doi:10.1351/goldbook.t06513, Приступљено 2020-04-21 
  4. ^ Nomenclature of inorganic chemistry. IUPAC recommendations 2005. Connelly, N. G., Royal Society of Chemistry (Great Britain), International Union of Pure and Applied Chemistry. Cambridge: Royal Society of Chemistry. 2005. ISBN 978-0-85404-438-2. OCLC 60838140. 
  5. ^ Nič, Miloslav; Jirát, Jiří, ур. (2009-06-12), protium (на језику: енглески) (2.1.0 изд.), IUPAC, ISBN 978-0-9678550-9-7, doi:10.1351/goldbook.p04903, Приступљено 2020-04-21 
  6. ^ Miessler, Gary L., 1949- (2004). Inorganic chemistry. Tarr, Donald A. (Donald Arthur), 1932-2006. (3rd изд.). Upper Saddle River, N.J.: Pearson Education. ISBN 0-13-035471-6. OCLC 52165864. 
  7. ^ а б Ter-Akopian, G. M.; Oganessian, Yu. Ts.; Bogdanov, D. D.; Fomichev, A. S.; Golovkov, M. S.; Rodin, A. M.; Sidorchuk, S. I.; Slepnev, R. S.; Stepantsov, S. V. (2002). „Hydrogen-4 and Hydrogen-5 from t+t and t+d transfer reactions studied with a 57.5-MeV triton beam”. AIP Conference Proceedings (на језику: енглески). Berkeley. California (USA): AIP. 610: 920—924. doi:10.1063/1.1470062. 
  8. ^ Korsheninnikov, A. A.; Golovkov, M. S.; Tanihata, I.; Rodin, A. M.; Fomichev, A. S.; Sidorchuk, S. I.; Stepantsov, S. V.; Chelnokov, M. L.; Gorshkov, V. A. (2001-08-13). „Superheavy Hydrogen H 5”. Physical Review Letters (на језику: енглески). 87 (9): 092501. ISSN 0031-9007. doi:10.1103/PhysRevLett.87.092501. 
  9. ^ „Table 1: Characteristics of the HIV-1 isolates retrieved from the Los Alamos sequence data base.”. dx.doi.org. Приступљено 2020-04-21. 


{{bottomLinkPreText}} {{bottomLinkText}}
Изотопи водоника
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?