For faster navigation, this Iframe is preloading the Wikiwand page for Coulombov zakon.

Coulombov zakon

Coulombov zákon [kulónov ~] je v fiziki zakon, ki podaja, kako sila med dvema točkastima električnima nabojema pojema z razdaljo. Imenuje se po francoskem fiziku, inženirju in častniku Charlesu Augustinu de Coulombu, ki ga je leta 1783 s svojo torzijsko tehtnico prvi raziskoval in objavil. Odvisnost sile od razdalje je pred tem predlagal Joseph Priestley. Odvisnost od razdalje in naboja je pred Coulombom odkril, vendar tega ni objavil Henry Cavendish.[1] Absolutna vrednost sile je premo sorazmerna produktu obeh nabojev in obratno sorazmerna s kvadratom razdalje med njima. Sila je privlačna, če sta naboja različno predznačena (eden pozitivno in drugi negativno), in odbojna, če sta enako predznačena.[2]

Skalarna oblika

[uredi | uredi kodo]
Coulombova torzijska tehntnica, gravura iz Mémoires de l'Académie des Sciences, 1784

V skalarni obliki je absolutna vrednost sile enaka:

Z je označen prvi naboj, z drugi, z pa razdalja med njima. je Ludolfovo število, pa influenčna konstanta. Sila se imenuje električna ali Coulombova sila. Coulombov zakon predstavlja enega od temeljev elektrostatike. Da je sila izražena v enakih enotah, kot se jo pozna iz mehanike, poskrbi sorazmernostni koeficient , imenovan Coulombova konstanta, včasih tudi Coulombova konstanta sile:

Koeficient je odvisen od določenih značilnosti prostora in se ga lahko izračuna eksaktno.[3][4] Tu je hitrost svetlobe, pa indukcijska konstanta.

Opazi se lahko, da je zakon po svoji obliki podoben Newtonovemu splošnemu gravitacijskemu zakonu, le da je masa vedno pozitivna, zato je gravitacijska sila vedno privlačna. Razmerje med velikostjo električne privlačne sile in gravitacijske sile med elektronoma je (glej tudi Diracova domneva velikih števil):

Tu je gravitacijska konstanta, osnovni naboj in mirovna masa elektrona. Električna sila je precej izdatnejša od gravitacijske. V svetu velikih teles pa gravitacijska sila prevlada, saj se pozitivni in negativni naboj telesa izravnata.[5]

Vektorska oblika

[uredi | uredi kodo]

Sila je vektorska količina. Leži na zveznici obeh nabojev. Matematično se lahko zato Coulombov zakon zapiše v obliki, ki to upošteva. Naj v izbranem inercialnem opazovalnem sistemu do nabojev e1 in e2 segata krajevna vektorja in . Električna sila prvega naboja na drugega je enaka:

Električno silo drugega naboja na prvega se dobi, če se zamenjata indeksa 1 in 2:

Pri tem je:

... kvadrat razdalje med nabojema,
... enotski vektor od drugega naboja k prvemu,
... enotski vektor od prvega naboja k drugemu.

Skladno z zakonom o vzajemnem učinku sta sili in nasprotno enaki.

Sistem več nabojev

[uredi | uredi kodo]

Če obstajata več kot dva točkasta naboja, deluje vsak od nabojev z električno silo na vse preostale naboje, nanj pa delujejo električne sile vseh ostalih nabojev. Sile se vektorsko seštevajo. Na naboj e v točki s krajevnim vektorjem tako deluje sila:

Indeks j teče po vseh nabojih v prostoru z izjemo e.

Ploskovno in prostorsko porazdeljen naboj

[uredi | uredi kodo]

Včasih ni mogoče računati s točkastimi naboji, ampak se obravnava naboj, ki je porazdeljen po ploskvi ali po prostoru. Izraz za sistem več nabojev se lahko posploši tako, da se vsota nadomesti s ploskovnim ali prostorninskim integralom:

Pri tem je ploskovna gostota naboja, pa (prostorninska) gostota naboja.

Sklici

[uredi | uredi kodo]
  1. Elliott (1999).
  2. »Coulomb's law« (v angleščini). Hyperphysics.
  3. »Coulomb's constant« (v angleščini). Hyperphysics.
  4. Strnad (1978), str. 317.
  5. Breuer (1993), str. 141.
{{bottomLinkPreText}} {{bottomLinkText}}
Coulombov zakon
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?