For faster navigation, this Iframe is preloading the Wikiwand page for System of units.

System of units

A system of units is a collection of units of measurement. The quantities described by the units are related to each other by specific rules. These rules may not contradict each other.[1]: §1.13 : §1.9  An example of a system like this is one needed for the problems of the economic system.[2]

Base and derived units

[change | change source]

Some of the units are called "base units". These units can be defined by arbitrarily.[1]: §1.10  Other units are called derived units. They are defined using the base units.[1]: §1.11  The most common systems of units today are the International System of Units (SI), the Imperial units and the United States customary units.

The base units of SI are the metre, the second, the kilogram, the ampere, the kelvin, the candela and the mole. SI has many derived units which include the watt, newton and joule. SI is called a "coherent system of units" because the constant factor in the definition of it derived units is always 1.[3][1]: §1.14 

The base units of the imperial system and the United States customary system are the pound avoirdupois, the yard and the second. Derived units found in the Imperial and Customary systems of units include horsepower and Pounds per square inch.

Coherent units

[change | change source]

The relationship force, energy and power is an example of coherence. The equations are

force = kf × mass × acceleration
energy = ke × force × distance
power = kp × energy / time.
If kf = 1 and ke = 1 and kp = 1 then the relationships are coherent.


In SI, the equations become

newtons = kilograms × metres per second squared
joules = newtons × metres
watts = joules / second.
SI is therefore a coherent system.


In the cgs system of units, the equations become

dynes = grams × centimetres per second squared
ergs = dynes × centimetres
ergs per second = erg / second.
The equations for the cgs system do not have any additional constants. It is therefore a coherent system.


In the MKS-gravitational system, the equations become

kilogram-force = kilograms × metres per second squared / 9.80665[Note 1]
Pferdestärke = 75 × kilogram-force × metres /seconds
The equations in the MKS-gravitational system have factors 75 and 9.80655. The system is therefore not is therefore not a coherent.


[change | change source]
  1. Standard acceleration due to gravity, as defined by the BIPM in 1901

References

[change | change source]
  1. 1.0 1.1 1.2 1.3 International vocabulary of metrology - Basic and general concepts and associated terms (PDF) (3rd ed.). Joint Committee for Guides in Metrology. 2008.
  2. Keynes, John Maynard (2006). General Theory Of Employment , Interest And Money. Atlantic Publishers & Dist. p. 35. ISBN 8126905913.
  3. International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), ISBN 92-822-2213-6
{{bottomLinkPreText}} {{bottomLinkText}}
System of units
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?