For faster navigation, this Iframe is preloading the Wikiwand page for LAMOST.

LAMOST

Материал из Википедии — свободной энциклопедии

Большой многоцелевой спектроскоп для наблюдения обширных районов неба
Large Sky Area Multi-Object Fibre Spectroscopic Telescope
Тип спектроскоп
Расположение  Китай, Синлун, район Пекина
Координаты 40°23′44″ с. ш. 117°34′33″ в. д.HGЯO
Высота 960 м[1]
Длины волн 370—900 нм
Диаметр 1,75 м
Угловое разрешение
Эффективная площадь
  • 18,86 м²
Фокусное расстояние 4 м
Монтировка одноосевой, сканирующий меридиан
Сайт Официальный сайт
Логотип Викисклада Медиафайлы на Викискладе

LAMOST (англ. Large Sky Area Multi-Object Fibre Spectroscopic Telescope, Большой многоцелевой спектроскоп для наблюдения обширных районов неба, также известный как телескоп Го Шоуцзин по имени китайского астронома XIII века) — крупнейший на данный момент спектроскоп, находящийся на наблюдательной станции Синлун в провинции Хэбэй Китая, недалеко от Пекина. Находится под управлением Китайской академии наук. Телескоп планируют использовать для 5-летнего астрономического спектрографического обзора 10 миллионов звёзд Млечного Пути, а также миллионов галактик. Стоимость проекта составляет 235 миллионов юаней, а высота конструкции больше 15-этажного здания. Апертура телескопа составляет 4 метра, что позволяет регистрировать спектр звёзд до 20,5 величины.

LAMOST сделан как зеркальный телескоп Шмидта с активной оптикой. Он оснащён двумя зеркалами, каждое из которых состоит из ряда шестиугольных деформируемых сегментов размером по 1,1 метра. Первое зеркало (24 сегмента, занимает площадь 5,72 м × 4,4 м в виде прямоугольника) является корректирующей пластиной Шмидта под куполом на наземном уровне[2]. Почти плоское первое зеркало отражает свет на юг, в сторону конструкции в виде большого наклонного туннеля (25° выше горизонтали) ко второму, более крупному сферическому фокусирующему зеркалу (37 сегментов, занимает площадь 6,67 м × 6,09 м в виде прямоугольника). Оно направляет свет к фокальной плоскости 1,75 метра в диаметре, соответствующей 5-градусному полю зрения. Фокальная плоскость облицована 4000 единицами волоконно-позиционирующих блоков, к каждому из которых подведено оптическое волокно, передающее свет на один из шестнадцати 250-канальных спектрографов, размещённых ниже.

На фотоснимке телескопа второе зеркало находится в верхней части левой колонны с опорной стойкой, а первое зеркало — левее двух куполов в правой части фотоснимка (самый правый, серый купол соединяет элементы телескопа), а спектрографы размещены внутри правой колонны.

Каждый спектрограф оснащён двумя ПЗС-камерами 4к×4к, использующими ПЗС-чипы компании e2v со сторонами синего (370–590 нм) и красного (570–900 нм) диапазонов световых волн; телескоп также можно использовать в более высоком режиме спектрального разрешения, где диапазон волн составляет 510–540 и 830–890 нм.[2]

Использование активной оптики для управления отражающим корректором делает этот телескоп уникальным астрономическим инструментом, сочетающим большую апертуру с широким углом обзора. Доступная огромная фокальная плоскость может вместить тысячи оптических волокон, с помощью чего собирается свет от далёких и слабых небесных объектов до 20,5 звёздной величины, а затем подаётся в спектрографы, что обещает крайне высокий уровень сбора светового спектра от десятка тысяч объектов за ночь.

Научные цели

[править | править код]

Конкретные научные цели использования телескопа включают в себя:

  • внегалактическое спектрографическое исследование для понимания крупномасштабной структуры вселенной;
  • спектрографическое исследование звёзд, в том числе поиск бедных железом звёзд в галактическом гало, для пополнения информации о структуре нашей галактики;
  • перекрёстная идентификация многодиапазонных исследований.

Также есть надежда, что огромный объём собираемых данных приведёт к дополнительным неожиданным открытиям. В начале пусконаладочных наблюдений удалось спектрографически подтвердить новый метод идентификации квазаров на основе их инфракрасного излучения.[3] Основной задачей телескопа стоит введение китайской астрономии в XXI век, заняв ведущую роль в астрономической спектрографии и в областях широкомасштабных исследований астрономии и астрофизики.

Результаты

[править | править код]

В ходе презентации на конференции 2011 года[4] предположили, что изначальная проблема с точностью волоконных позиционирующих модулей связана с их плохой пропускной способностью, но это было исправлено добавлением ещё одного шага калибровки.

В той же презентации указывается, что местоположение телескопа лишь в 115 км северо-восточней Пекина далеко от идеального, и находится на территории с высоким уровнем как атмосферного, так и светового загрязнения.

С помощью телескопа LAMOST учёным удалось найти сверхскоростные звезды LAMOST-HSV1, LAMOST-HSV2 и LAMOST-HSV3, движущиеся со скоростью 300 км/с[5].

К 30 марта 2022 года на телескопе Го Шоуцзин китайские астрономы открыли 1417 компактных галактик, что в 1,8 раза больше количества таких галактик, открытых астрономами других стран. Из-за небольшого размера и зеленоватых, голубоватых и фиолетовых оттенков на фотографиях большинство новооткрытых галактик подразделено на «гороховые» (739 галактик), «черничные» (270 галактик) и «виноградные» (388 галактик). Самая далёкая из открытых галактик находится на расстоянии 9 млрд световых лет от нашей планеты, а масса самой массивной составляет 10 млрд масс Солнца[6].

Примечания

[править | править код]
  1. China’s e-Science Blue Book 2018. — 2020. — P. 42. — ISBN 9789811393907.
  2. 1 2 Yongheng ZHAO. Preparing first light of LAMOST (27 марта 2009). Архивировано 29 июля 2014 года.  (PDF)  (англ.)  (Дата обращения: 20 июля 2015)
  3. Xue-Bing Wu; Zhendong Jia; Zhaoyu Chen; Wenwen Zuo; Yongheng Zhao; Ali Luo; Zhongrui Bai; Jianjun Chen; Haotong Zhang (2010). "Eight new quasars discovered by LAMOST in one extragalactic field". arXiv:1006.0143 [astro-ph.CO].
  4. Martin Smith. Progress and plans for Chinese surveys (4 июня 2011). Дата обращения: 20 июля 2015. Архивировано 23 августа 2019 года. Каталог файлов проекта.  (PDF)  (англ.)
  5. Быстрее молнии: открыты две звезды, летящие с чудовищно высокой скоростью Архивная копия от 6 сентября 2017 на Wayback Machine, 5 сентября 2017
  6. "Китайские астрономы нашли более 1 400 новых компактных галактик". «Жэньминь жибао». 2022-03-30. Архивировано 31 марта 2022. Дата обращения: 31 марта 2022.
Для улучшения этой статьи желательно: Проверить качество перевода с иностранного языка.Исправить статью согласно стилистическим правилам Википедии.После исправления проблемы исключите её из списка. Удалите шаблон, если устранены все недостатки.
{{bottomLinkPreText}} {{bottomLinkText}}
LAMOST
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?