For faster navigation, this Iframe is preloading the Wikiwand page for Полупростой модуль.

Полупростой модуль

Материал из Википедии — свободной энциклопедии

Полупростые модули (вполне приводимые модули) — общеалгебраические модули, которые можно легко восстановить по их частям. Кольцо, являющееся полупростым модулем над самим собой, называется артиновым полупростым кольцом. Важный пример полупростого кольца — групповое кольцо конечной группы над полем характеристики ноль. Структура полупростых колец описывается теоремой Веддербёрна — Артина: все такие кольца являются прямыми произведениями колец матриц.

Определение

[править | править код]

Приводятся три эквивалентных[1] определения полупростого (вполне приводимого) модуля: модуль M полупростой, если

  1. M изоморфен прямой сумме простых модулей (также называемых неприводимыми).
  2. M можно разложить в прямую сумму простых подмодулей M.
  3. Для каждого N — подмодуля M существует дополнение P, такое что M = NP.

Полная приводимость — более сильное условие, чем вполне разложимость: вполне разложимый модуль — это модуль, который раскладывается в прямую сумму неразложимых. Например, кольцо целых чисел является вполне разложимым (это следует из его неразложимости), однако не является вполне приводимым, так как у него имеются подмодули (к примеру, множество чётных чисел).

  • Если M полупрост и N — его подмодуль, то N и M/N также полупросты.
  • Если все  — полупростые модули, то и прямая сумма полупроста.
  • Модуль M является конечнопорождённым и полупростым тогда и только тогда, когда он является артиновым и его радикал нулевой.

Полупростые кольца

[править | править код]

Кольцо называется полупростым (слева), если оно полупросто как (левый) модуль над самим собой. Оказывается, что полупростые слева кольца полупросты справа и наоборот, так что можно говорить о полупростых кольцах.

Полупростые кольца можно охарактеризовать в терминах гомологической алгебры: кольцо R полупросто тогда и только тогда, когда всякая короткая точная последовательность (левых) R-модулей расщепляется. В частности, модуль над полупростым кольцом инъективен и проективен.

Полупростые кольца являются одновременно артиновыми и нётеровыми. Если существует гомоморфизм из поля в полупростое кольцо, оно называется полупростой алгеброй.

  • Коммутативное полупростое кольцо изоморфно прямому произведению полей.
  • Если k — поле и G — конечная группа порядка n, то групповое кольцо k[G] является полупростым тогда и только тогда, когда характеристика поля не делит n. Этот результат известен как теорема Машке и важен в теории представлений групп.

Теорема Веддербёрна — Артина

[править | править код]

Теорема Веддербёрна — Артина утверждает, что любое полупростое кольцо изоморфно прямому произведению колец матриц ni на ni с элементами в теле Di, причем числа ni определены однозначно, и тела — с точностью до изоморфизма. В частности, простое кольцо изоморфно кольцу матриц над телом.

Оригинальный результат Веддербёрна состоял в том, что простое кольцо, являющееся конечномерной простой алгеброй над телом, изоморфно кольцу матриц. Эмиль Артин обобщил теорему на случай полупростых (артиновых) колец.

Примеры случаев, в которых можно применить теорему Веддербёрна — Артина: каждая конечномерная простая алгебра над R является кольцом матриц над R, C или H (кватернионами), каждая конечномерная простая алгебра над С является кольцом матриц над С.

Примечания

[править | править код]
  1. Nathan Jacobson, Basic Algebra II (Second Edition), p.120

Литература

[править | править код]
  • Jacobson, Nathan (1989), Basic algebra II (2nd ed.), W. H. Freeman, ISBN 978-0-7167-1933-5
  • Lam, Tsit-Yuen (2001), A First Course in Noncommutative Rings (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-95325-0, MR: 1838439
  • R.S. Pierce. Associative Algebras. Graduate Texts in Mathematics vol 88.
{{bottomLinkPreText}} {{bottomLinkText}}
Полупростой модуль
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?