For faster navigation, this Iframe is preloading the Wikiwand page for Серединный треугольник.

Серединный треугольник

Материал из Википедии — свободной энциклопедии

Красный треугольник является серединным треугольником для чёрного. Вершины красного треугольника лежат в серединах сторон чёрного.

Серединный треугольник (также срединный треугольник или дополнительный треугольник) — треугольник, построенный на серединах сторон данного треугольника, частный случай серединного многоугольника.

Серединный треугольник можно рассматривать как образ исходного треугольника при гомотетии с центром в центроиде с множителем −½. Таким образом, серединный треугольник подобен исходному и имеет тот же самый центроид и медианы, что и исходный треугольник . Отсюда также следует, что периметр серединного треугольника равен полупериметру треугольника и что его площадь равна четверти площади треугольника . Более того, четыре треугольника, на которые разбивается исходный треугольник серединным треугольником, равны по трём сторонам, так что их площади равны и составляют четверть площади исходного треугольника[1]. В этой связи иногда «серединными» называют сразу все четыре равных между собой внутренних треугольника, получаемых из заданного треугольника проведением в нём трёх средних линий (в наиболее традиционной терминологии серединным называют только один из них — центральный).

Ортоцентр серединного треугольника совпадает с центром описанной окружности данного треугольника , этот факт даёт средства для доказательства того, что центр описанной окружности, центроид и ортоцентр лежат на одной прямой — прямой Эйлера.

Серединный треугольник является подерным треугольником центра описанной окружности. Окружность девяти точек является описанной для серединного треугольника, а потому центр девяти точек является центром описанной вокруг серединного треугольника окружности Точка Нагеля серединного треугольника является центром вписанной окружности исходного треугольника[2].

Серединный треугольник равен треугольнику, вершинами которого служат середины отрезков, соединяющих ортоцентр и его вершины (треугольник Эйлера)[3].

Центр вписанной окружности треугольника лежит в серединном треугольнике[4]. Точка внутри треугольника является центром вписанного в треугольник эллипса[англ.] тогда и только тогда, когда эта точка лежит внутри серединного треугольника[5]. Серединный треугольник является единственным вписанным треугольником, для которого никакой из трёх остальных треугольников не имеет площадь, меньшую площади этого треугольника[6]. Центр окружности, вписанной в серединный треугольник данного треугольника , является центром масс периметра треугольника (центром Шпикера), этот центр является центром тяжести однородной проволочной фигуры, соответствующей треугольнику.

Ортополюс P прямой линии треугольника является радикальным центром трех окружностей, которые касаются прямой линии и имеют центры в вершинах антидополнительного треугольника по отношению к данному треугольнику.[7]

Инцентр данного треугольника является точкой Нагеля треугольника, образованного его 3 средними линиями (серединного треугольника).[8]

Координаты

[править | править код]

Пусть  — длины сторон треугольника . Трилинейные координаты вершин серединного треугольника задаются формулами:

Антисерединный треугольник

[править | править код]

Если  — серединный треугольник для , то является антисерединным треугольником (антидополнительным) для . Антикомплементарный треугольник для образуется тремя прямыми, параллельными сторонам  — параллельно через точку , параллельно через точку и параллельно через точку .

Трилинейные координаты вершин антисерединного треугольника задаются формулами:

Примечания

[править | править код]
  1. Posamentier, Lehmann, 2012, с. 177.
  2. Altshiller-Court, 2007, с. 161, Теорема 337.
  3. Altshiller-Court, 2007, с. 103,#206;108,#1.
  4. Franzsen, 2011, с. 233, Лемма 1.
  5. Chakerian, 1979, с. 139, Глава 7.
  6. Torrejon, 2005, с. 137.
  7. College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. Nathan Altshiller-Court. (Параграф: G. The Orthopole. Упражнения. Пункт 6. С. 291). Mineola, New York: Dover Publication, Inc., 2012. 292 p.
  8. Honsberger, R.. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer. 1995. P. 51, Пункт (b).// https://b-ok.cc/book/447019/c8c303 Архивная копия от 14 июля 2020 на Wayback Machine

Литература

[править | править код]
  • Alfred S. Posamentier, Ingmar Lehmann. The Secrets of Triangles. — Prometheus Books, 2012.
  • William N. Franzsen. The distance from the incenter to the Euler line // Forum Geometricorum. — 2011. — Вып. 11.
  • Nathan Altshiller-Court. College Geometry. — Dover Publications, 2007.
  • G. D. Chakerian. Mathematical Plums / R. Honsberger. — Washington, DC: Mathematical Association of America,, 1979.
  • Ricardo M. Torrejon. On an Erdos inscribed triangle inequality // Forum Geometricorum. — 2005. — Вып. 5.
  • Зетель С. И. Новая геометрия треугольника. Пособие для учителей. 2-е издание.. — М.: Учпедгиз, 1962. — 153 с.
{{bottomLinkPreText}} {{bottomLinkText}}
Серединный треугольник
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?