For faster navigation, this Iframe is preloading the Wikiwand page for Рефрижератор растворения.

Рефрижератор растворения

Материал из Википедии — свободной энциклопедии

Рефрижератор растворения

Рефрижера́тор растворе́ния — криогенное устройство, впервые предложенное Хайнцем Лондоном. В процессе охлаждения используется смесь двух изотопов гелия: 3He и 4He. При охлаждении ниже 700 мК смесь испытывает самопроизвольное разделение фаз, образуя фазы: богатую 3He и богатую 4He.

Как и при охлаждении испарением, для переноса атомов 3He из фазы, богатой 3He, в фазу, богатую 4He, требуется энергия. Если заставить атомы 3He непрерывно пересекать границу раздела фаз, смесь будет эффективно охлаждаться. Поскольку фаза, богатая 4He, не может содержать меньше чем 6 % 3He, даже при абсолютном нуле температуры в равновесии, рефрижератор растворения может быть эффективным при очень низких температурах. Ёмкость, в которой происходит этот процесс, называется смесительной камерой.

Наиболее простое применение — «одноразовый» рефрижератор растворения. В одноразовом режиме большой объем 3He постепенно перемещается через границу раздела фаз в фазу, богатую 4He. Когда весь запас 3He оказывается в фазе, богатой 4He, рефрижератор не может продолжать работу.

Намного чаще рефрижераторы растворения работают в непрерывном цикле. Смесь 3He / 4He ожижается в конденсаторе, который подсоединён через дроссель к области смесительной камеры, богатой 3He. Атомы 3He, проходя через границу раздела фаз, отбирают энергию у системы. Далее следует различать рефрижераторы растворения с внешней и с внутренней откачкой. В первом случае пары 3He откачиваются высоковакуумным насосом (турбомолекулярным или диффузионным). Во втором — сорбционным насосом. Рефрижераторы растворения с внешней откачкой обеспечивают большую холодопроизводительность, однако нуждаются в большем количестве 3He. Откачанный 3He, иногда очищенный, возвращается в конденсор.

Рефрижераторы растворения с непрерывным циклом обычно используются в низкотемпературных физических экспериментах.

Охлаждающая мощность

[править | править код]

Охлаждающая мощность (в ваттах) в смесительной камере может быть примерно рассчитана по следующей формуле:

где  — скорость циркуляции 3He, Tm — температура в смесительной камере, и Ti — температура 3He при попадании в смесительную камеру[1]. В случае, если тепловая нагрузка равна нулю, имеется фиксированное соотношение между двумя температурами:

Из этого соотношения видно, что низкая Tm может быть достигнута, только если Ti также мала. В рефрижераторе растворения последняя уменьшается с помощью теплообменников. Однако при очень низких температурах это становится весьма сложным из-за так называемого сопротивления Капицы. Это тепловое сопротивление на границе раздела между жидким гелием и поверхностью теплообменника. Оно обратно пропорционально T4 и площади поверхности теплообмена A. Другими словами: тепловое сопротивление при увеличении площади поверхности в 10 000 раз остаётся тем же, если температура уменьшается в 10 раз. Таким образом, для получения малого термального сопротивления при низкой температуре (ниже 30 мК) нужна весьма большая площадь поверхности теплообменника. На практике с этими целями используется очень мелкодисперсный серебряный порошок. Впервые это было предложено профессором Дж. Фроссати в 1970 году[2]. В настоящее время компания, основанная им, является ведущим производителем рефрижераторов растворения и другой Hi-end холодильной техники[3].

Ограничения

[править | править код]

Принципиального ограничения минимальной температуры, достижимой в рефрижераторах растворения, нет. Тем не менее, температурный диапазон ограничивается примерно 2 мК по практическим соображениям: чем ниже температура циркулирующей жидкости, тем больше её вязкость и теплопроводность. Для уменьшения теплоты внутреннего трения в вязкой жидкости диаметры входного и выходного патрубков камеры смешения должен быть пропорциональны Tm−3, а для уменьшения теплопередачи длина трубы должна быть пропорциональна Tm−8. Это означает, что, для снижения температуры в 2 раза, необходимо увеличить диаметр в 8 раз, а длину — в 256 раз. Следовательно, объём должен быть увеличен в 214 = 16 384 раз. Другими словами: каждый см3 при 2 мК требует 16 384 см3 при 1 мК. В результате рефрижератор окажется очень большим и очень дорогим. Для охлаждения до температур ниже 2 мК существует альтернатива: ядерное адиабатическое размагничивание.

Примечания

[править | править код]
  1. Pobell, Frank. Matter and Methods at Low Temperatures // Berlin: Springer-Verlag. — 2007. — С. 461.
  2. О компании Leiden Cryogenics. Дата обращения: 9 декабря 2014. Архивировано из оригинала 20 декабря 2014 года.
  3. О компании Leiden Cryogenics (на русском). Дата обращения: 9 декабря 2014. Архивировано 14 декабря 2014 года.
Для улучшения этой статьи желательно: Переработать оформление в соответствии с правилами написания статей.После исправления проблемы исключите её из списка. Удалите шаблон, если устранены все недостатки.
{{bottomLinkPreText}} {{bottomLinkText}}
Рефрижератор растворения
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?